The Univalent Notion of Equality

"Every type of objects has a natural, extensional notion of equality"
"This notion is called the identity type"
"The Univalence Axiom lets us compute the identity type"

Why?

"This equality is preserved by all expressible operations giving some amount of correctness for free."

Why?

"This equality is preserved by all expressible operations giving some amount of correctness for free."

Huh?

In software, equality is hairy:

\$ python

>>> $(0.3+0.7)-0.7==0.3+(0.7-0.7)$
False

Programs work with representations:

$$
[(\mathrm{a}, \mathrm{~b}),(\mathrm{b}, \mathrm{~b}),(\mathrm{c}, \mathrm{a})]
$$

and

$[(c, a),(b, b),(a, b)]$
could both represent:

Not all operations on representations

 preserve semantic equality:$$
\begin{aligned}
& \text { deleteFirstEdge([(a,b),(b,b),(c,a)]) } \\
& =[(b, b),(c, a)]
\end{aligned}
$$

But:
deleteFirstEdge([(c,a),(b,b),(a,b)])

$$
=[(\mathrm{b}, \mathrm{~b}),(\mathrm{a}, \mathrm{~b})]
$$

Conventional solution: APIs

- Hide direct access to representations.
- Provide access to a set of "good" operations to work with objects.

Example:
filterEdges :: (Edge \rightarrow Bool) \rightarrow Graph \rightarrow Graph

With APIs, we must hope and pray (or prove) that:

- The operations provided really respect equality.
- Everything we want can be done using the provided operations.

Often using APIs involve "pinky swearing":

mapKeysMonotonic

$::\left(\mathrm{k} \rightarrow \mathrm{k}^{\prime}\right) \rightarrow$ Map k a \rightarrow Map k' a
Must be montone!
But there is no way to express this in the syntax.

Dependent type theory approaches this problem differently:

- Much more expressive type system
- Accurate representations:
\rightarrow All expressible operations preserve equality
- Univalence allows computing exactly what equality is.

Different notions of equality:

- Syntactic
- Definitional
- Representational
- Computational
- Dynamic / equality of entities
- Extensional

Leibniz' Principle

(G.W. Leibniz, Discourse on metaphysics, 1686)

$$
\mathrm{X}=\mathrm{Y} \quad \Leftrightarrow \underset{\text { Predicate } / \text { property }}{\forall \mathrm{P}} \cdot \mathrm{P}(\mathrm{X}) \Leftrightarrow \mathrm{P}(\mathrm{Y})
$$

Fundamental property of extensional equality

Propositions as types

Brouwer - Heyting - Kolmogorov

Computational interpretation of logic

- L. E. J. Brouwer (1881-1966)
- Arend Heyting (1898-1980)
- Andrey Kolmogorov (1903-1987)

Logical connectives and quantifiers

$$
\begin{aligned}
& \text { T } \perp \\
& A \wedge B \quad A \vee B \quad A \rightarrow B \\
& \exists \mathrm{x} \in \mathrm{D} P(\mathrm{x}) \quad \forall \mathrm{x} \in \mathrm{D} P(\mathrm{x}) \\
& \neg \mathrm{A}:=\mathrm{A} \rightarrow \perp
\end{aligned}
$$

BHK: What is a proof?

* is a proof of T

A constant!
(a, b) is a proof of $A \wedge B$ if $\left\{\begin{array}{l}a \text { is a proof of } A \\ \text { and } \\ b \text { is } a \text { proof of } B\end{array}\right.$
A pair!
$l(a)$ is a proof of $A \vee B$ if a is a proof of A $1 r(b)$ is a proof of $A \vee B$ if b is a proof of B

Labels!

A proof of $A \rightarrow B$ is a function f which transformes any proof a of A into a proof $f(a)$ of B
(d, p) is a proof of $\exists x \in D P(x)$ if $d \in D$ and p is a proof $P(d)$
f is a proof of $\forall x \in D P(x)$
if for each $d \in D, f(d)$ is a proof of $P(d)$
Again a function!

The rules of logic, justified:
Intuitionistic!

Modus Ponens

MP is justified since given f proving $\mathrm{A} \rightarrow \mathrm{B}$ and a proving A, we get $f(a)$ proving B.

Propositions as types
 Curry-Howard $(1934,1958,1969)$

Types:
0 the empty type
1 the unit type
$\mathrm{A} \times \mathrm{B}$ (binary) product type
$A+B$ (binary) sum type

Elements:

$(\mathrm{a}, \mathrm{b}): \mathrm{A} \times \mathrm{B}$ when $\mathrm{a}: \mathrm{A}$ and $\mathrm{b}: \mathrm{B}$
l(a): A+B when a:A
$r(b): A+B \quad$ when $b: B$
$A \rightarrow B$ function type
$\lambda(x: A) \cdot b(x) \quad$ when $b(x): B$ 1972

Propositions as types
 Curry-Howard $(1934,1958,1969)$

Types:

$\sum(x: A) B(x)$ dependent sum
$\Pi(\mathrm{x}: \mathrm{A}) \mathrm{B}(\mathrm{x})$ dependent product
\mathbb{N}, Vec A inductive types
Type universe type

Elements:

(a, b) where $\mathrm{a}: \mathrm{A}$ and $\mathrm{b}: \mathrm{B}(\mathrm{a})$
$\lambda(\mathrm{x}: \mathrm{A}) \cdot \mathrm{b}(\mathrm{x})$ where $\mathrm{b}(\mathrm{x}): \mathrm{B}(\mathrm{x})$

Sn0, vectors
Closed under all other type formers.

VHAKON R. GYLTER UD

Propositions as types
 Curry-Howard $(1934,1958,1969)$

A type
a : A

A is a proposition
a is a proof of A

Propositions as types

Curry-Howard $(1934,1958,1969)$
0,1
$A \times B$
$A+B$
$A \rightarrow B$
$\sum(x: A) B(x)$
$\prod(x: a) B(x)$

$$
\begin{aligned}
& T, \perp \\
& A \wedge B \\
& A \vee B \\
& A \rightarrow B \\
& \exists(x \in A) B(x) \\
& \forall(x \in a) B(x)
\end{aligned}
$$

Example: Sorting

In Haskell: sort $::[\mathbb{N}] \rightarrow[\mathbb{N}]$
In type theory we can translate the prop.:
"Every list can be sorted"
$\forall s \in[\mathbb{N}] \exists \sigma \in$ Perm Sorted $(\mathrm{s} \circ \sigma)$
To a type:
$\Pi(s:[\mathbb{N}]) \sum(\sigma:$ Perm $)$ Sorted $(\mathrm{s} \circ \sigma)$
whose elements are sorting functions w/proof of correctness!

But what about equality?

The Identity Type
 Martin-Löf (late 1970s)

For any type A and elements a, a^{\prime} : A
the type $a={ }_{A} a$ ' is "generated" by refl(a): $a=a$

Examples:
$0=\mathbb{N}_{\mathbb{N}} 1$ is empty!
$2+2={ }_{N} 4$ has exactly one element: refl(4) (Hedberg 1998)

$$
\begin{aligned}
& \text { The rich! } \\
& \mathrm{p}: \mathrm{a}={ }_{\mathrm{A}} \mathrm{a}^{\prime} \text { is a proof that a equals } \mathrm{a}^{\prime} \\
& \quad \text { but there can be more than one such proof! }
\end{aligned}
$$

But Leibniz' principle holds for the identity type!

Homotopy type theory:

The understanding of:
$\left.\begin{array}{l}\mathrm{a}=\mathrm{A}_{\mathrm{A}} \mathrm{a}^{\prime} \text { as a path type and } \\ \text { types as } \omega \text {-groupoids. }\end{array}\right\} \quad$ Warren (2009)
Defined using the identity type!

The type $A \simeq B$ of equivalences from A to B
Voevodsky (2009)
Generalises isomorphisms from category theory!

Now we can compute identity types:

$$
\begin{aligned}
& (a, b)=_{A \times B}\left(a^{\prime}, b^{\prime}\right) \simeq a=A_{A}^{\prime} \times b==_{B} b^{\prime} \\
& f==_{A \rightarrow B} g \simeq(x: A) f(x)=_{B} g(x) \\
& A=(A \simeq B)
\end{aligned}
$$

Example: Graphs in Homotopy Type Theory

A graph consists of:
Node : Type
Edge : Node \rightarrow Node \rightarrow Type
Graph := \sum ($\mathrm{N}:$ Type) (Node \rightarrow Node \rightarrow Type)

Example: Graphs in Homotopy Type Theory

A graph consists of:
Node : Type
Edge : Node \rightarrow Node \rightarrow Type
Graph := \sum ($\mathrm{N}:$ Type) (Node \rightarrow Node \rightarrow Type)
Example!

$$
\left(\{a, b, c\}, \quad\left\{\begin{array}{l}
a, b \mapsto 1 \\
b, b \mapsto 1 \\
c, a \mapsto 1 \\
,,-\mapsto 0
\end{array}\right)\right.
$$

Example: Graphs in Homotopy Type Theory

A graph consists of:
Node : Type
Edge : Node \rightarrow Node \rightarrow Type
Graph := \sum ($\mathrm{N}:$ Type) (Node \rightarrow Node \rightarrow Type)
Using univalence we can compute:

$$
\begin{aligned}
& (N, E) \overline{G r a p h}^{\left(N^{\prime}, E^{\prime}\right)} \\
& \simeq \quad \sum\left(\alpha: N \simeq N^{\prime}\right) \prod\left(n n^{\prime}: N\right) E\left(n, n^{\prime}\right) \simeq E^{\prime}\left(\alpha(n), \alpha\left(n^{\prime}\right)\right)
\end{aligned}
$$

MORAL: An equality between graphs is a graph isomorphism!

Example: Graphs in Homotopy Type Theory

MORAL: An equality between graphs is a graph isomorphism!
Leibniz' principle: Any graph property is invariant under isomorphism!

Also: Every operation preserves isomorphisms of graphs!

For instance any function Graph $\rightarrow \mathbb{N}$ is a graph invariant.
"Every type of objects has a natural, extensional notion of equality"
"This notion is called the identity type"
"The Univalence Axiom lets us compute the identity type"

Why?

"This equality is preserved by all expressible operations giving some amount of correctness for free."

Applications

Homotopical Patch Theory

Angiuli, Morehouse, Licata, Harper (2016)

A formalisation of version control systems:

- The repository is a type
"commit" in Git-lingo
- A path in the repository is a patch
- Merging is a special kind of operation on patches:

Planar Graphs in HoTT

Prieto Cubides, Gylterud (on-going)

Defining a notion of graph embedding in the plane.
Equality of embeddings is isotopy.
Continous deformation w/o crossing edges!

Thank you!

