The Univalent Notion of Equality

"Every type of objects has a natural, extensional notion of equality"

"This notion is called the identity type"

"The Univalence Axiom lets us compute the identity type"

Why?

"This equality is preserved by all expressible operations giving some amount of correctness for free."

Why?

"This equality is preserved by all expressible operations giving some amount of correctness for free."

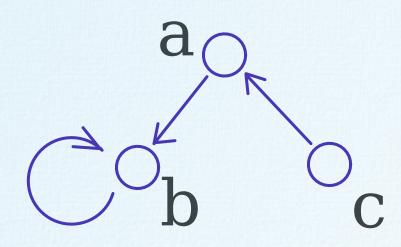
Huh?

In software, equality is hairy:

\$ python >>>(0.3 + 0.7) - 0.7 == 0.3 + (0.7 - 0.7)False

Programs work with representations:

[(a,b),(b,b),(c,a)]and could both represent: [(c,a),(b,b),(a,b)]

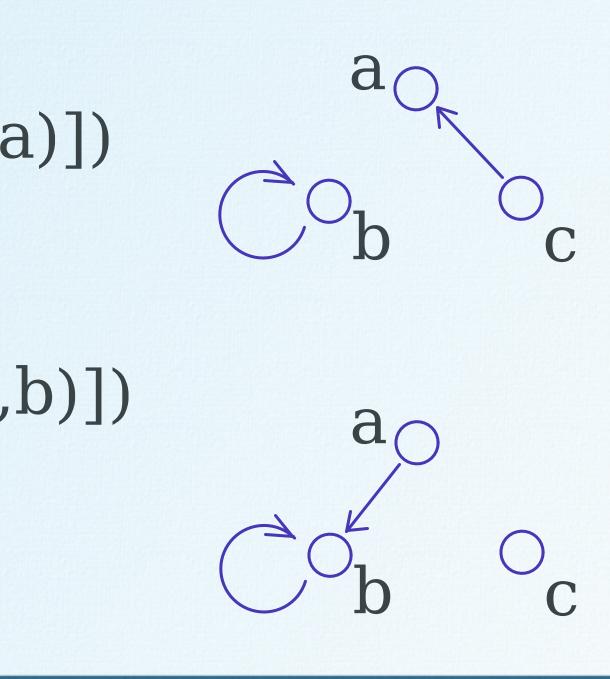


🤘 HÅKON R. GYLTERUD

Not all operations on representations preserve semantic equality:

deleteFirstEdge([(a,b),(b,b),(c,a)])
 = [(b,b),(c,a)]

But: deleteFirstEdge([(c,a),(b,b),(a,b)]) = [(b,b),(a,b)]



KON R. GYLTERUD

Conventional solution: APIs

- Hide direct access to representations.
- Provide access to a set of "good" operations to work with objects.

Example:

filterEdges :: (Edge \rightarrow Bool) \rightarrow Graph \rightarrow Graph

🤘 HÅKON R. GYLTER UD

With APIs, we must hope and pray (or prove) that:

- The operations provided really respect equality.
- Everything we want can be done using the provided operations.

Often using APIs involve "pinky swearing":

$\begin{array}{l} mapKeys\underline{Monotonic}\\ :: (k \rightarrow k') \rightarrow Map \; k \; a \rightarrow Map \; k' \; a \end{array}$ Must be montone!

But there is no way to express this in the syntax.

Dependent type theory approaches this problem differently:

- Much more expressive type system
- Accurate representations:

 \rightarrow All expressible operations preserve equality

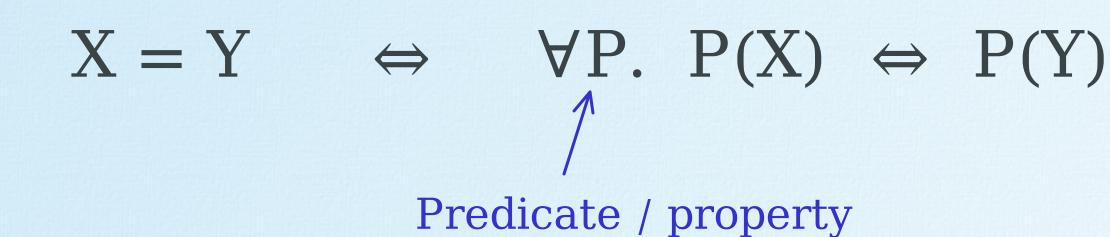
 Univalence allows computing exactly what equality is.

Different notions of equality:

- 1 = 1 but not 1+1 = 2• Syntactic
- Definitional $f(x) := x^2$
- 0001010 = 0001010Representational
- Computational
- Dynamic / equality of entities
- Extensional

$1+2=3 \text{ but not } \sum_{k=\frac{n^{2}+n}{2}}^{n}$

Leibniz' Principle



Fundamental property of extensional equality

(G.W. Leibniz, Discourse on metaphysics, 1686)

🤘 HÅKON R. GYLTER UD

Propositions as types

Brouwer – Heyting – Kolmogorov

Computational interpretation of logic

- L. E. J. Brouwer (1881 - 1966)
- (1898 1980)Arend Heyting
- Andrey Kolmogorov (1903–1987)

1934 (1908, 1924)

1932 (Propositional logic)

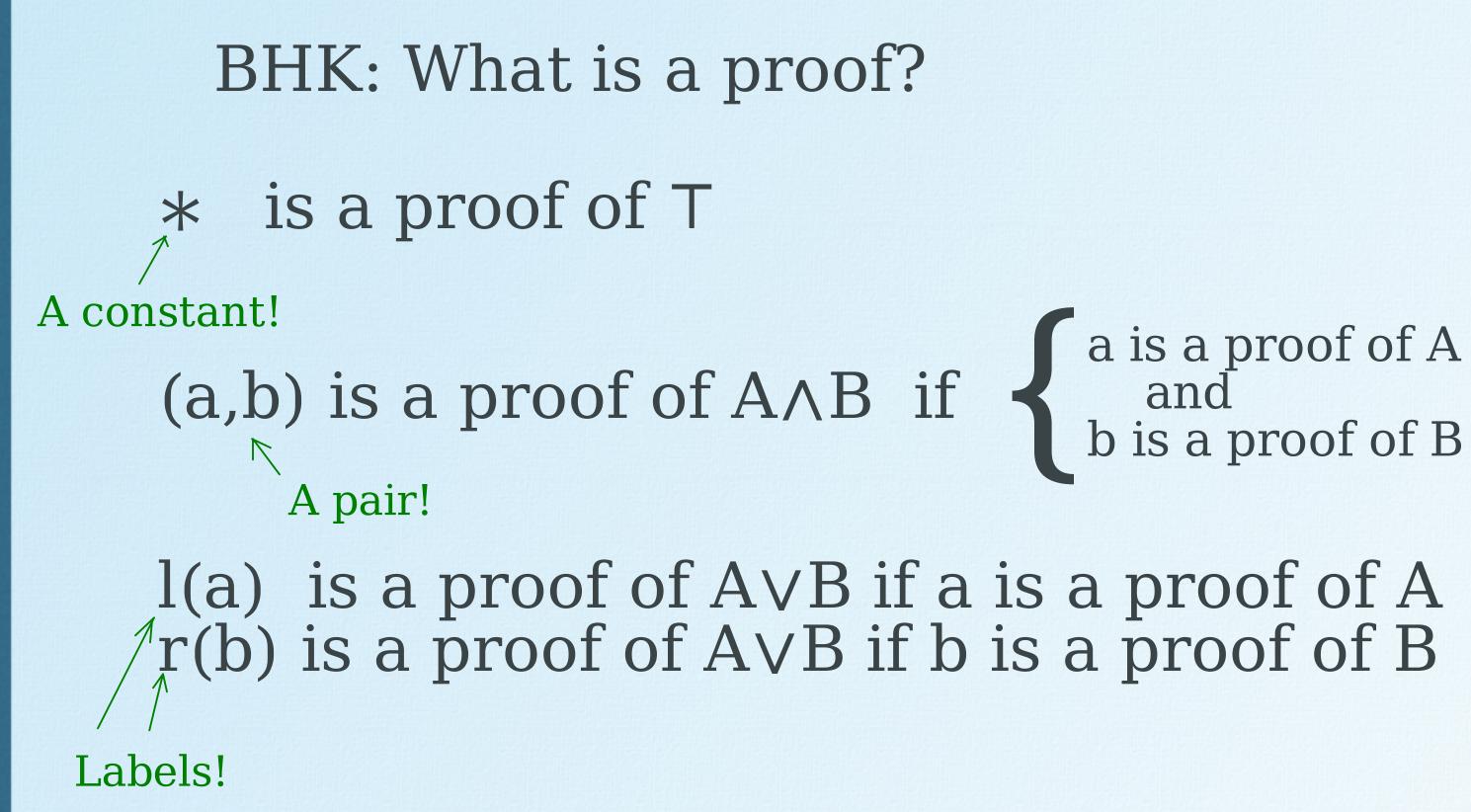
Logical connectives and quantifiers

$A \wedge B \qquad A \vee B$ $\exists x \in D P(x)$

 $\neg A := A \rightarrow \bot$

$A \rightarrow B$ $\forall x \in D P(x)$

🤘 HÅKON R. GYLTERUD



KON R. GYLTER

A proof of $A \rightarrow B$ is a <u>function f</u> which transformes any proof a of A into a proof f(a) of B

(d,p) is a proof of $\exists x \in D P(x)$ if $d \in D$ and p is a proof P(d)

f is a proof of $\forall x \in D P(x)$ if for each $d \in D$, f(d) is a proof of P(d)

Again a function!

The rules of logic, justified: Intuitionistic!

$A \rightarrow B \quad A$ **Modus Ponens** R

MP is justified since given f proving $A \rightarrow B$ and a proving A, we get f(a) proving B.

HÅKON R. GYLTERUD

Propositions as types Curry—Howard (1934,1958,1969)

Elements: Types: the empty type 0 the unit type *:1 1 (a,b) : A×B when a:A and b:B A×B (binary) product type l(a) : A+B when a:A A+B (binary) sum type when b:B r(b): A+B $A \rightarrow B$ function type $\lambda(x:A).b(x)$ when b(x) : BMartin-Löf, 1972

🤟 HÅKON R. GYLTERUD

Propositions as types Curry—Howard (1934,1958,1969)

Types:

 $\sum (x:A) B(x)$ dependent sum \prod (x:A) B(x) dependent product

 \mathbb{N} , Vec A inductive types universe type Type

Elements:

(a,b) where a:A and b:B(a) $\lambda(x:A).b(x)$ where b(x):B(x)

Sⁿ0, vectors

Closed under all other type formers.

HÅKON R. GYLTERUD

Propositions as types Curry—Howard (1934,1958,1969)

A type a : A

A is a proposition a is a proof of A

Propositions as types Curry—Howard (1934,1958,1969)

Τ, ⊥ 0,1 $A \wedge B$ A×B AVB A+B $A \rightarrow B$ $A \rightarrow B$ $\exists (x \in A) B(x)$ \sum (x:A) B(x) \forall (x \in a) B(x) \prod (x:a) B(x)

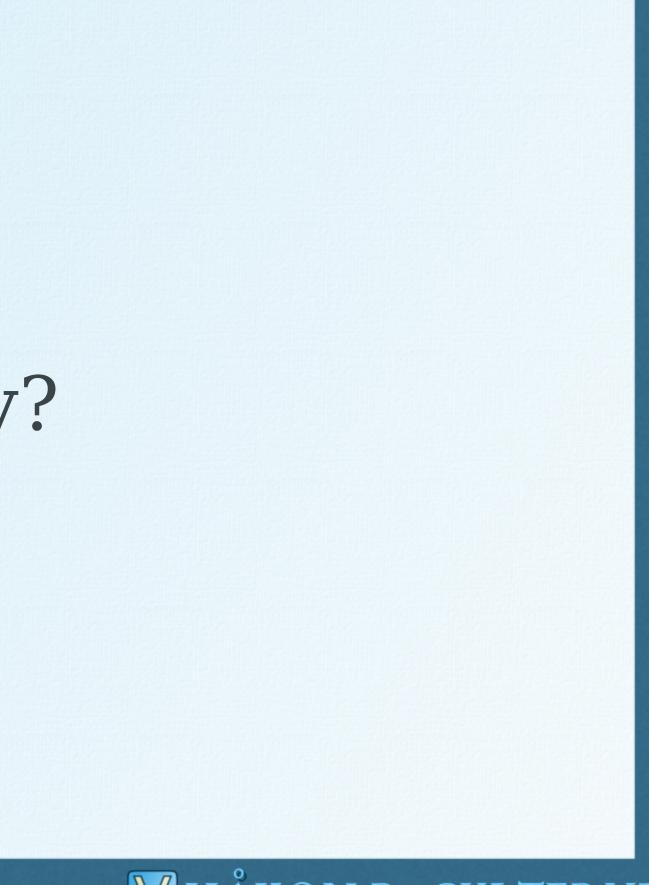
Example: Sorting

- In Haskell: sort :: $[\mathbb{N}] \to [\mathbb{N}]$
- In type theory we can translate the prop.:
- "Every list can be sorted"
- $\forall s \in [\mathbb{N}] \exists \sigma \in \text{Perm Sorted}(s \circ \sigma)$
- To a type:

- \prod (s:[N]) \sum (σ :Perm) Sorted(s $\circ \sigma$)
- whose elements are sorting functions w/proof of correctness!

Simplified for simplicity!

But what about equality?



😽 HÅKON R. GYLTERUD

The Identity Type Martin-Löf (late 1970s)

For any type A and elements a,a' : A the type $a_{a}a'$ is "generated" by refl(a) : $a_{a}a'$

Examples:

0 = 1 is empty! has exactly one element: refl(4) (Hedberg 1998) $2+2=_{N}4$

🤘 HÅKON R. GYLTER UD

rich! The identity is suprisingly complex. p: a = a' is a proof that a equals a' but there can be more than one such proof!

But Leibniz' principle holds for the identity type!

Homotopy type theory:

The understanding of: a = a' as a path type and types as ω -groupoids.

The type $A \simeq B$ of <u>equivalences</u> from A to B Voevodsky (2009)

Warren (2009)

Defined using the identity type!

Generalises isomorphisms from category theory!

HÅKON R. GYLTERUD

Now we can compute identity types:

$$(a,b) =_{A\times B} (a',b') \simeq a =_{A} a' \times b =_{B} b$$

$$f =_{A\to B} g \simeq \prod(x:A) f(x) =_{B} g(x)$$

$$A =_{Type} B \simeq (A \simeq B)$$

יר

X)

ivalence!

Example: Graphs in Homotopy Type Theory

A graph consists of:

Node : Type Edge : Node \rightarrow Node \rightarrow Type

Graph := $\sum (N : Type)$ (Node \rightarrow Node \rightarrow Type)

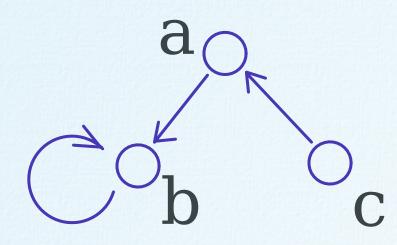
Example: Graphs in Homotopy Type Theory

A graph consists of:

Node : Type Edge : Node \rightarrow Node \rightarrow Type

Graph := $\sum (N : Type)$ (Node \rightarrow Node \rightarrow Type) Example!

$$\{a,b,c\}, \begin{cases} a,b\mapsto 1\\ b,b\mapsto 1\\ c,a\mapsto 1\\ -,-\mapsto 0 \end{cases}$$



HÅKON R. GYLTER

Example: Graphs in Homotopy Type Theory

A graph consists of: Node : Type Edge : Node \rightarrow Node \rightarrow Type Graph := $\sum (N : Type)$ (Node \rightarrow Node \rightarrow Type) Using univalence we can compute: (N, E) = (N', E') $\simeq \sum (\alpha : N \simeq N') \prod (n n':N) E(n,n') \simeq E'(\alpha(n),\alpha(n'))$ MORAL: An equality between graphs is a graph isomorphism!

🤘 HÅKON R. GYLTERUD

Example: Graphs in Homotopy Type Theory MORAL: An equality between graphs is a graph isomorphism! Leibniz' principle: Any graph property is invariant under isomorphism!

Also: Every operation preserves isomorphisms of graphs!

For instance any function Graph $\rightarrow \mathbb{N}$ is a graph invariant.

🤘 HÅKON R. GYLTER

"Every type of objects has a natural, extensional notion of equality"

"This notion is called the identity type"

"The Univalence Axiom lets us compute the identity type"

Why?

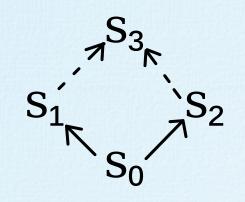
"This equality is preserved by all expressible operations giving some amount of correctness for free."

Applications

Homotopical Patch Theory Angiuli, Morehouse, Licata, Harper (2016)

A formalisation of version control systems:

- The repository is a type
- A path in the repository is a patch
- Merging is a special kind of operation on patches:

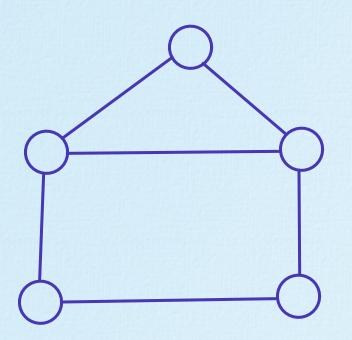


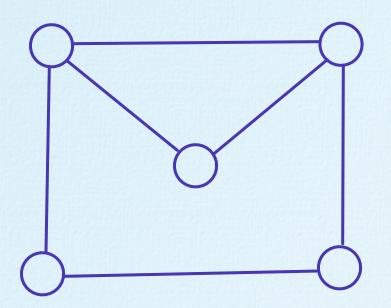
Like Git!

"commit" in Git-lingo

Planar Graphs in HoTT Prieto Cubides, Gylterud (on-going)

Defining a notion of graph embedding in the plane. Equality of embeddings is isotopy.





Continuos deformation w/o crossing edges!

Thank you!

