
The Univalent Notion
    of Equality



“Every type of objects has a natural,
  extensional notion of equality”

“This notion is called the identity type”

“The Univalence Axiom lets us compute
  the identity type”



Why?

“This equality is preserved by all
  expressible operations giving some
  amount of correctness for free.”
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In software, equality is hairy:

 $ python

>>> (0.3 + 0.7) – 0.7 == 0.3 + (0.7 – 0.7)

        False



Programs work with representations:

[(a,b),(b,b),(c,a)]

       and                  could both represent:

[(c,a),(b,b),(a,b)] a

b c



Not all operations on representations
preserve semantic equality:

 deleteFirstEdge([(a,b),(b,b),(c,a)])
     = [(b,b),(c,a)]

But:
  deleteFirstEdge([(c,a),(b,b),(a,b)])
     = [(b,b),(a,b)]
 

a

b c

a

b c



Conventional solution: APIs

• Hide direct access to representations.

• Provide access to a set of “good”
  operations to work with objects.

Example:

 filterEdges :: (Edge → Bool) → Graph → Graph



With APIs, we must hope and pray (or prove)
that:

 • The operations provided really respect
    equality.

 • Everything we want can be done using
    the provided operations.



Often using APIs involve “pinky swearing”:

mapKeysMonotonic
      :: (k → k') → Map k a → Map k' a

But there is no way to express this in
the syntax.

Must be montone!



Dependent type theory approaches this
problem differently:

 • Much more expressive type system

 • Accurate representations:

      → All expressible operations
           preserve equality

 • Univalence allows computing
    exactly what equality is.



Different notions of equality:

  • Syntactic                       1 = 1   but not 1+1 = 2

  • Definitional                    f(x) ≔ x²

  • Representational          0001010 = 0001010

  • Computational              1+2=3 but not ∑ k  =

  • Dynamic / equality of entities

  • Extensional

n² + n
    2k=0

n



Leibniz’  Principle

X = Y      ⇔     ∀P.  P(X)  ⇔  P(Y)

Predicate / property

(G.W. Leibniz, Discourse on metaphysics, 1686)

Fundamental property of extensional equality



Propositions as types



Brouwer — Heyting — Kolmogorov

Computational interpretation of logic

• L. E. J. Brouwer       (1881–1966)

• Arend Heyting         (1898–1980)

• Andrey Kolmogorov (1903–1987)

} 1934 (1908, 1924)

1932 (Propositional logic)



Logical connectives and quantifiers

              ⊤                ⊥

A ∧ B          A∨B          A → B

∃x∈D  P(x)             ∀x∈D  P(x)

                    ¬A ≔ A → ⊥



BHK: What is a proof?

∗   is a proof of ⊤

(a,b) is a proof of A∧B  if

l(a)  is a proof of A∨B if a is a proof of A
r(b) is a proof of A∨B if b is a proof of B

{a is a proof of A
    and
b is a proof of B

Labels!

A pair!

A constant!



A proof of  A → B  is a function f which
    transformes any proof a of A
    into a proof f(a) of B



(d,p) is a proof of ∃x∈D P(x)
         if d ∈ D and p is a proof P(d)

f  is a proof of ∀x∈D P(x)
    if for each d∈D,  f(d) is a proof of P(d)

Again a function!



The rules of logic, justified:

    A → B     A
   ──────────   Modus Ponens
           B

MP is justified since given f proving A → B
and a proving A, we get f(a) proving B.

Intuitionistic!



Propositions as types
Curry—Howard (1934,1958,1969)

Types:                               Elements:

0   the empty type

1   the unit type                              ∗ : 1

A×B (binary) product type         (a,b) : A×B   when a:A and b:B

A+B (binary) sum type               l(a) : A+B    when a:A
                                                    r(b) : A+B    when b:B

A→B  function type                     λ(x:A).b(x)    when b(x) : B
Martin-Löf, 1972



∑(x:A) B(x)  dependent sum             (a,b)   where  a:A and b:B(a)

∏(x:A) B(x)  dependent product       λ(x:A).b(x) where b(x) : B(x)

ℕ  ,   Vec A    inductive types           Sⁿ0 ,   vectors

Type         universe type                   Closed under all other
                                                          type formers.

Propositions as types
Curry—Howard (1934,1958,1969)

Types:                               Elements:



Propositions as types
Curry—Howard (1934,1958,1969)

A  type                           A  is a proposition

a : A                               a  is a proof of A



Propositions as types
Curry—Howard (1934,1958,1969)

   0 , 1

  A×B
     
  A+B

  A→B

 ∑(x:A) B(x)

 ∏(x:a) B(x)  
               

   ⊤ , ⊥

  A∧B
     
  A∨B

  A→B

 ∃(x∈A) B(x)

 ∀(x∈a) B(x)  
               



Example:  Sorting

In Haskell:    sort  :: [ℕ] → [ℕ]

In type theory we can translate the prop.:

“Every list can be sorted”

∀s∈[ℕ] ∃σ∈Perm  Sorted(s∘σ)

To a type:

∏(s:[ℕ]) ∑(σ:Perm) Sorted(s∘σ)

whose elements are sorting functions w/proof of correctness!

Simplified for simplicity!



But what about equality?



The Identity Type
Martin-Löf (late 1970s)

For any type A and elements a,a' : A

the type  a= a'  is “generated” by      refl(a) : a= aAA

Examples:

    0= 1  is empty!

2+2=  4     has exactly one element: refl(4)   (Hedberg 1998)

ℕ

ℕ



The identity is suprisingly complex.
rich!

p : a= a'   is a proof that a equals a'

       but there can be more than one such proof!

A

But Leibniz’ principle holds for the identity type!



Homotopy type theory:

The understanding of:

       a= a'   as a path type and

       types as ω-groupoids.

 The type A ≃ B of equivalences from A to B

A } Warren (2009)

Voevodsky (2009) Generalises isomorphisms from 
category theory!

Defined using
  the identity type!



Now we can compute identity types:

(a,b)=  (a',b')   ≃    a= a' × b= b'

f =   g        ≃    ∏(x:A) f(x)=  g(x)

A =   B      ≃      (A ≃ B)

A×B A B

A→B B

Type

Univalence!



Example: Graphs in Homotopy Type Theory

A graph consists of:

     Node : Type
     Edge : Node → Node → Type

Graph ≔  ∑(N : Type) (Node → Node → Type)



Example: Graphs in Homotopy Type Theory

A graph consists of:

     Node : Type
     Edge : Node → Node → Type

Graph ≔  ∑(N : Type) (Node → Node → Type)

a

b c

{a,b,c} ,

a , b ↦ 1
b , b ↦ 1
c , a ↦ 1
_ , _ ↦ 0{( )

Example!



Example: Graphs in Homotopy Type Theory

A graph consists of:

     Node : Type
     Edge : Node → Node → Type

Graph ≔  ∑(N : Type) (Node → Node → Type)

Using univalence we can compute:

(N, E) =    (N' , E')
   
     ≃    ∑(α : N≃N') ∏(n n':N) E(n,n')≃E'(α(n),α(n'))

MORAL: An equality between graphs is a graph isomorphism!

Graph



Example: Graphs in Homotopy Type Theory

MORAL: An equality between graphs is a graph isomorphism!

Leibniz’ principle:  Any graph property
                               is invariant under isomorphism!

Also: Every operation preserves isomorphisms of graphs!

For instance any function Graph → ℕ is a graph invariant.



“Every type of objects has a natural,
  extensional notion of equality”

“This notion is called the identity type”

“The Univalence Axiom lets us compute
  the identity type”



Why?

“This equality is preserved by all
  expressible operations giving some
  amount of correctness for free.”



Applications



Homotopical Patch Theory
Angiuli, Morehouse, Licata, Harper (2016)

A formalisation of version control systems:

   • The repository is a type

   • A path in the repository is a patch

   • Merging is a special kind of operation on patches:

s₀
s₁         s₂

s₃

Like Git!

“commit” in Git-lingo



Planar Graphs in HoTT

Prieto Cubides, Gylterud (on-going)

Defining a notion of graph embedding in the plane.

Equality of embeddings is isotopy.

Continous deformation
      w/o crossing edges!



Thank you!


