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Sammendrag

Avhandlingen best̊ar av fire artikler i matematisk logikk og én formalis-
eringdel. De fire artiklene er arbeider innenfor omr̊adet typeteori. De to
første artiklene er arbeider internt i typeteorien, og formaliseringen av
disse er skrevet i Agda – et bevissjekkingssystem basert p̊a Martin-Löfs
type teori.

Den første artikkelen omhandler multimengder i typeteori. Multi-
mengder er et kjent begrep fra omr̊ader som kombinotarikk og infor-
matikk. Kort beskrevet er multimengder samlinger av elementer hvor et
element kan forekomme et vilk̊arlig antall ganger i samlingen. Form̊alet
med artikkelen er å beskrive et hierarki av iterative multimengder, og
utforske aksiomer for disse som ligner de man kjenner fra konstruktiv
mengdelære. Homotopitypeteori og Voevodskys univalensaxiom spiller
en sentral rolle, ettersom hierarkiet av multimengder bygges relativt til
et univalent univers.

Den andre artikkelen tar ibruk hierarkiet av iterative multimengder
fra den første artikkelen, og utvikler en modell for mengdelæren i ho-
motopitypeteori. Dette gjøres ved å definiere mengder som de multi-
mengder hvor hvert element forekommer høyst én gang. Vi viser at
denne modellen tilfredstiller aksiomer for konstruktiv mengdelære, og
at den er ekvivalent til en allerede kjent modell for mengdelæren. En
av attraksjonene ved denne formuleringen er at den kan uttrykkes uten
s̊akalte høyere induktive typer.

De to artikklene om multimengder og mengder er formalisert i Agda,
og bevisene er sjekket ved hjelp av datamaskin. Kildekoden for formalis-
eringen er gjengitt, sammen med en kort diskusjon, som en separat del
i denne avhandlignen.

De to siste artikklene omhandler semantikk for typeteori fra et kate-
goriteoretisk perspektiv. Først diskuteres en mulig kobling mellom type-
teori og databaseteori, ved å konstruere en modell for typeteorien basert
p̊a simplisialkomplekser. Vi utforsker hvordan ulike typeteoretiske kon-
septer, slik som Σ-typer, Π-typer og univers kan oversettes via denne
modellen til databaseteoretiske termer. For eksempel viser det seg at
naturlig join er et spesialtilfelle av Π-typen i denne modellen.

Den siste artikkelen diskuterer to ulike m̊ater å beskrive avhengighet-
srelasjoner mellom termer i avhengige typesystemer. Den første m̊aten er
en variant av kategorier med attributter, som er en vellstudert m̊ate å gi
kategoriteoretisk semantikk til typeteori. Den andre er en videreutvikling
av Makkai’s s̊akalte enveiskategorier, til å inkludere termer i tillegg til
typer.
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Preface

This text has been written as a doctorate thesis in the subject of math-
ematical logic, and is a collection of papers. The thesis is based on
research carried out during the years 2012–2016, and consists of five
parts. The parts A, B, D and E are individual research papers, while
Part C is a formalisation of Part A and Part B in the Agda language.
Each part is equipped with an abstract and more careful introduction.
We will here give a bit of context for each part.

Part A. Having studied containers for my Master Thesis at The
University of Oslo, 2011, it was natural to continue to study polyno-
mial functors and W-types in the context of Martin-Löf type theory
when I arrived in Stockholm, January 2012. Through reading Egbert
Rijke’s master thesis, and attending the 4th Formal Topology Workshop
in Ljubljana, June 2012, I became aware of what is now called Homo-
topy Type Theory, and the novel interpretation of the identity type as
paths in a space.

In late 2013 I was studying the W-types of groupoids and their iden-
tity type when I considered the W-type, Wa:U T a for a universe T . Erik
Palmgren, my advisor, quickly pointed me to Aczel’s 1977 paper, which
uses this exact type to model set theory. Applying what homotopy the-
ory tells us about the identity type of the universe, I arrived at the
conclusions found in Part A.

Part B. The work on constructing a model of constructive set the-
ory from the multisets of Part A started while I was visiting Carnegie
Mellon University in Pittsburgh, Pennsylvania, late January and early
February of 2014. At the seminar there, I presented my ideas, and Steve
Awodey raised the question of how to turn this into a model of set the-
ory. Answering this question then became the focus of Part B of this
thesis.

Part C. While in Pittsburgh, I also started formalising my results
on multisets in Agda. Having experimented with Agda since the very
first weeks of coming to Stockholm, I was happy to find that my work
on multisets was very amendable to formalisation. The work on formal-
ising these results continued for more than a year, coming to essential
completion in August 2015, after a quiet month of focused effort in the
pleasant Stockholm summer. It is now collected in Part C.

Part D. The fourth part is based on previous work by co-author
David I. Spivak on the connections between simplicial complexes and
databases. Along with Henrik Forssell, who initiated the cooperation,
we worked out the details of a model of type theory based on simplicial
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complexes (which form a locally cartesian closed category), and made
connections back to notions in databases such as natural join. In Jan-
uary 2016 I presented this at Logical Foundations of Computer Science
(LFCS16), and a shorter version of the article was printed in the pro-
ceedings of the conference. The full version of Part D is submitted for
the post-conference special volume of Annals of Pure and Applied Logic.

Part E.During the spring term 2013 I took a course on the Theory of
Operads, taught by Sergei Merkulov. Inspired by the operad approach to
algebras, and Makkai’s one-way categories, I wanted to study dependent
type theory from a more combinatorial perspective. Some small progress
on this topic was made in the following couple of years and presented
in various forms at the Stockholm Logic Seminar. This work has now
been collected into Part E.

Organisation of the thesis

The thesis is divided into five parts, referred to by the Latin letters
A, B, C, D and E. Each part contains a number of sections, numbered
1, 2 etc. The sections are sometimes subdivided into subsections: 3.1,
3.2, etc. Definitions, lemmas, propositions and theorems are collectively
numbered within each part. For instance, Lemma A:6 is followed by
Definition A:7. The parts each start with an abstract and the first
section of each part is an introduction. The list of references are found
at the end of each part.

The mathematical notation varies slightly between the parts, reflect-
ing that these are individual works of mathematics here collected. Hope-
fully, the reader will find that each part introduces its notation clearly.
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Introduction to the thesis

Each part of the thesis has an individual section devoted to introduction.
This part is intended as a quick introduction, focusing on the ideas
behind each part.

Type theory

Martin-Löf’s intuitionistic type theory serves as foundation of construc-
tive mathematics. For a complete introduction we refer the reader to
Nordström, Petersson, and Smith 2000. We will here give a high level
overview of the aspects relevant to the articles of this thesis.

At the core of Martin-Löf’s type theory are ideas such as

• propositions as types, sometimes referred to as the Curry—Howard
correspondence,

• defining inductive structures through introduction and elimination
rules, and

• collecting types into universes, in a way similar to Grothendieck
universes do in set theory.

The way these three are accomplished is by having dependent types.
A dependent type is a type which takes parameters in other (possibly
themselves dependent) types. A typical first example is the type of
vectors over some base type, say A. The vectors have different length
and thus one can see vectors as a type VecA n in the context (n : N),
meaning that n for each natural number n there is a type VecA n of
vectors of length n, of elements of A. One sometimes use the term
“family of types” to denote dependent types.

Often, one can express dependent types as functions into a type of
types. For instance, if Type is the type of small types, then a family of
small types parameterised by a type A can be represented by a function
A → Type.

Propositions as types

Perhaps the most appealing aspect of dependent type theory is that
one does not need a separate framework for logic. Instead the type
theory comes equipped with a logical framework — where types play
the role of propositions, and in particular dependent types play the role
of predicates. For instance, a unary predicate on a type A is simply a
dependent type P : A → Type. A binary predicate can be seen either as
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a dependent type A×A → Type or, more conveniently, A → A → Type
— by currying.

The beauty of representing propositions by types is that it turns out
that the logical connectives can be expressed by the usual type forma-
tions, such as dependent products and sums. For instance the existen-
tial quantification of a binary predicate P : A → Type is expressed by∑

a:A P a. The elements of
∑

a:A P a are pairs (a, p) where a : A and
p : P a, which is exactly a witness of the existential quantification there
is a : A such that P a holds (i.e. has a witness p : P a). The table below
summarises the correspondence.

Logical connective Type formation

∀a : A P a
∏

a:A P a
∃a : A P a

∑
a:A P a

P → Q P → Q ≡ ∏p:P Q

P ∧ Q P × Q ≡∑p:P Q

P ∨ Q P +Q
⊥ 0, the empty type

 1, the unit type

Since a type may have more than one element, logic as presented
above is called proof-relevant logic. The idea is that each element of the
type representing a proposition represents a proof of that proposition.
An added benefit of having an element of a type representing a proof
of a proposition is that the element may be normalised — an impor-
tant property of type theory. This means that one can often extract
algorithms from proofs in type theory.

Proof-relevance is especially interesting in the case of equality. There
are several ways to represent equality in type theory. One way, rooted in
the ideas of Errett Bishop, is to equip the type with a separate equality
predicate to form what is called a setoid. A second way is to represent
equality by what is called the identity type. Given any type A, the
identity type, IdA is inductively defined as the least reflexive relation on
the type.

An amazing fact, first established by Hofmann and Streicher1 by
their groupoid interpretation of type theory, is that the identity type
may have more than one element. Thus, two elements of a type may
be equal in more than one way. This has become the foundation of
what is called Homotopy Type Theory — where types are interpreted as

1Hofmann and Streicher 1998.
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a space and the identity type is the path space. For a comprehensive
introduction to this field, see the book “Homotopy Type Theory”2.

One of the deeper notions which has been brought to attention by
Homotopy Type Theory is the notion of equivalence of types. We refer
to the book, “Homotopy Type Theory”, for the definition, but we will
use the notation A � B to denote that A and B are equivalent types.

Introduction and elimination rules

In the previous subsection we mentioned different type constructors,
such as Π-types and Σ-types. In Martin-Löf’s type theory these are
primitive operations on types, presented each by a set of rules. For
each type there is a formation rule, none or more introduction rules,
an elimination rule, and none or more computation rules. We will not
display these rules here, but rather give some intuition as to what they
express.

In short, the formation rules tell us how to construct types, and in-
troduction rules how to construct elements of types. Elimination rules
give sufficient conditions to carry out a construction with a free variable
in the type. For instance, the elimination rule of N corresponds to math-
ematical induction by propositions as types. Computation rules tell us
the result of applying the a construction specified by an elimination rule
to an element constructed by an introduction rule. We refer the reader
to Nordström, Petersson, and Smith 2000 for a complete description of
these concepts.

Universes

In the usual formulations of dependent type theory there is one kind
of types which does not have an elimination — namely the universes.
The intuition behind universes is that they are “open-ended” families of
types, closed under type formation rules such as Π-types and Σ-types.
This means that if A : U is a type in the universe3 and F : A → U is a
family of types in U , indexed by A, then

∑
a:A F a : U , etc.

The lack of an elimination rule has the consequence that the identity
type on U is undecided. This leaves room for additional axioms spec-
ifying how to interpret the identity of the universe. The most famous

2Univalent Foundations Program 2013.
3Elements of types such as U are not themselves types, and one often speak

of a decoding family T : U → Type, when defining a universe formally. For sim-
plicity, we apply the syntactic convention which omits mention of this decoding
family, and write A : Type instead of T A : Type
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such axiom is Voevodsky’s Univalence Axiom. It states that the identity
type on the universe coincides with equivalence of types. Concretely, it
states that for each A, B : U the canonical map IdU A B → A � B, is
an equivalence of types.

Multisets

Multisets can be simply described as collections of elements where each
element may occur any number of times. Examples, such as {1, 1,−2},
are abundant in mathematics, for instance as the roots of polynomi-
als, such as x3 − 3x + 2. One can even view polynomials with co-
efficients in natural numbers as finite multisets of finite multisets of
variables. For instance xy2 + 3xy + x + 2 could be represented by
{{x, y, y}, {x, y}, {x, y}, {x, y}, {x}, {}, {}}.

Going beyond the finite case, any function gives rise to a multiset
image, where each element in the codomain occurs the number of times
the function attains this value. For instance f : R → R, given by
f x := x3 −3x+2 (see Figure 1), would have an image multiset: Im f =
(−∞, 4) ∪ [0, 4] ∪ (0,∞). Union of multisets is additive, so that the
number of times x occurs in A ∪ B is the sum of the times x occurs in
A and the times x occurs in B. Thus, Im f is the multiset in which
each element of (0, 4) occurs trice, 4 and 0 occur twice, and elements of
(−∞, 0) and (4,∞) occur once. This gives a lot more information about
the polynomial, compared to the image set — which is just R for any
polynomial of degree 3.

A multiset may also be infinite in the sense that an element may
occur infinitely main times. For instance 0 occurs countably infinitely
many times in the image of the sine function, since sin x = 0 ⇔ ∃k ∈
Z x = πk.

The first article of this thesis concerns multisets. In particular iter-
ative multisets. Quoting from the introduction of Part A:

In a flat multiset, the elements are taken from some domain
which may not consist of other multisets. The iterative mul-
tisets have elements which are multisets themselves, and the
collection iterative multisets is generated in a well-founded
manner.

The idea is to have a similar structure as in usual (iterative) set
theory, where there is a domain V of sets and a binary relation ∈ on V .
This is where the idea of propositions as types enter the picture. We
will have a domain M and a binary relation ∈ on M . However, since we
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Figure 1: Plot of f x := x3 − 3x+ 2.

will be working in type theory, x ∈ y will be a type for all x, y : M . The
natural interpretation of the elements of x ∈ y is that they represent the
occurrences of x in y, and thus proof-relevance dictates that x may occur
multiple times in y, hence they are multisets. We see that merely stating
the signature of set theory in type theory has brought us to consider the
possibility of multisets. Thus, the type M will be the type of iterative
multisets M .

Letting x ∈ y be a type is a convenient notation for multisets. For
instance, stating that 0 occurs countably many times in Im sin is simply
asserting that (0 ∈ Im sin) � N.

We have already mentioned that any function gives rise to a multiset.
Part A, is based on the idea that this is an adequate way to represent
multisets in general, and in particular that an iterative multiset can be
seen as a type A : U and a function f : A → M . This gives rise to an
inductive definition, namely that M is the least solution to the equation
M � ∑

A:U (A → M). This is an example of a well-known inductive
construction, namely W -types. In fact this is the exact type studied by
Aczel 1978, in his construction of a model of set theory in type theory.

In his work, Aczel uses the setoid approach to equality. The Uni-
valence Axiom, however, allows us to compute the identity on M . In-
terestingly, the identity type on M is non-trivial, with several distinct
equalities even between concrete finite multisets in M . Thus, M is a
groupoid, and we can see multiset theory as a kind of categorification of
set theory.

xix



Sets

The idea behind Part B is that iterative sets are merely a special class of
iterative multisets, namely those in which each element occurs at most
once — and such that this property is hereditary, so that each element
again has the iterative set property. We define such a subtype of M , by
induction, and consider how various axioms of constructive set theory
apply to this model. Quoting from the introduction:

Once the notion of a multiset is defined, it is natural to study
the hereditary subtype of multisets where each element oc-
curs at most once. These are in a certain sense the most
natural representations of iterative sets from a homotopy
type theory point of view. These are namely the multisets
for which the elementhood relation is hereditarily, merely
propositional (type level −1).
In this text we explore how this type models various axioms
of constructive set theory. We also show that it is equivalent
to the higher inductive type outlined in the book “Homotopy
Type Theory”4.

Databases

While the first two articles of the thesis are completely situated inside
type theory, Part D takes a step out and considers particular a model
of type theory from a category theoretic point of view. The particular
model is based on simplicial complexes, and is intended to model certain
aspects of database theory. Quoting from the introduction:

Databases being, essentially, collections of (possibly interre-
lated) tables of data, a foundational question is how to best
represent such collections of tables mathematically in order
to study their properties and ways of manipulating them.
The relational model, essentially treating tables as structures
of first-order relational signatures, is a simple and powerful
representation. Nevertheless, areas exist in which the rela-
tional model is less adequate than in others. One familiar
example is the question of how to represent partially filled
out rows or missing information. Another, more fundamen-
tal perhaps, is how to relate instances of different schemas, as

4Univalent Foundations Program 2013.
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opposed to the relatively well understood relations between
instances of the same schema. Adding to this, an increasing
need to improve the ability to relate and map data structured
in different ways suggests looking for alternative and supple-
mental ways of modelling tables, more suitable to “dynamic”
settings. It seems natural, in that case, to try to model tables
of different shapes as living in a single mathematical struc-
ture, facilitating their manipulation across different schemas.
We investigate, here, a novel way of representing data struc-
tured in systems of tables which is based on simplicial sets
and type theory rather than sets of relations and first-order
logic.

The basic notions of databases are those of a database schema and
those of an instance of a schema. Simply put, a schema is a description
of a layout of tables: each table described by a list of attributes. It
is essential that attributes may be shared across different tables. An
instance is then an actual set of tables, filled with data, which adhere
to the layout of the schema.

Given a schema and an instance, full tuple is a tuple of data with an
entry for each attribute in the schema, such that the restriction to each
table corresponds to an existing row in the instance. Below is a simple
example.

Schema: {(A, B, C), (A, D)}
Instance:

A B C

x a 3
y b 7
x b 1

A D

x 

x ⊥
y ⊥
z 


Full tuples: (x, a, 3,
), (x, c, 1,
), (x, a, 3,⊥), (x, c, 1,
) and (y, b, 7,⊥).

xxi



The idea we investigate in Part D is to align these three basic notions,
along with a further notion of morphism between schemas, with the
basic judgements of type theory. The following table, from the article
summarises this alignment:

Judgement Interpretation
Γ : Context �Γ� is a schema
A : Type(Γ) �A� is an instance of the schema Γ
t : Elem(A) �t� is an full tuple in the instance A
σ : Γ �� Λ �σ� is a (display) schema morphism
Γ ≡ Λ �Γ� and �Λ� are equal schemas
A ≡ B : Type(Γ) �A� and �B� are equal instances of �Γ�
t ≡ u : Elem(A) �t� and �u� are equal full tuples in �A�
σ ≡ τ : Γ �� Λ the morphisms �σ� and �τ� are equal
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Multisets in Type Theory

Abstract

A multiset consists of elements, but the notion of a mul-
tiset is distinguished from that of a set by carrying infor-
mation of how many times each element occurs in a given
multiset. In this work we will investigate the notion of iter-
ative multisets, where multisets are iteratively built up from
other multisets, in the context Martin-Löf Type Theory, in
the presence of Voevodsky’s Univalence Axiom.
Aczel 1978 introduced a model of constructive set theory

in type theory, using a W-type quantifying over a universe,
and an inductively defined equivalence relation on it. Our in-
vestigation takes this W-type and instead considers the iden-
tity type on it, which can be computed from the Univalence
Axiom. Our thesis is that this gives a model of multisets.
In order to demonstrate this, we adapt axioms of construc-
tive set theory to multisets, and show that they hold for our
model.

1 Introduction

The purpose of this paper is to describe a model of iterative, transfinite
multisets and to discuss a possible axiomatisation of the model in the
context of univalent Martin-Löf style type theory. Before describing the
model, we discuss existing works on multisets and their relation to the
model at hand.

Usage of multisets has a long history, both in mathematics and in
applications. In classical mathematics one models multisets inside set
theory in various ways. Here follows a brief description of three common
ways of representing multisets.

A very general definition, introduced in Rado 1975, is that a multiset
on a domain set X, consists of an assignment X → Card, which for
each element of the domain specifies the (possibly transfinite) number
of occurrences of the element in the multiset. Often, this notion is
restricted to functions X → N, which represent multisets where each
element occurs finitely many times.

One can also view a multiset as a set A with an equivalence relation
R defined on A. The idea is that the elements of A are the occurrences
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in the multiset, and the relation R specifies which occurrences are the
same. Thus the number of occurrences of a ∈ A is the size of the R-
equivalence class of a.

A third way is to consider a multiset as a family of sets. The index
set of the family corresponds to the domain in Rado’s multisets, but
instead of assigning a cardinal number, we have a set of occurrences.

These three approaches illuminate different aspects of multisets, and
even though they are formulated quite differently it is relatively easy to
pass back and forth between them. In fact they would be equivalent if
one removes the constraint that the relation in the second formulation
should be reflexive, or restricts the other two to ensure that each element
in the domain occurs at least once.

Rado’s formulation reflects that elements in a multiset occurs a spe-
cific number of times. This can be problematic in a constructive context,
where the notion of cardinality is much more nuanced. This is solved if
one takes the family-of-sets definition, which makes perfect sense con-
structively, but requires more thought as to what constitutes equality
between multisets. The notion of equality between multisets is a topic
we will come back to later in this paper.

Considering a multiset as a set with equivalence relation, a setoid,
gives an interesting way to talk about the different between identical
elements and equal elements. The identity of elements in the underlying
set A tells us when occurrences are identical, and the relation R tells us
which occurrences are equal. Since the underlying theory is set theory,
we can distinguish equal occurrences in a multiset, but not identical
occurrences.

All three notions describe what we in this paper will refer to as “flat
multisets”, as opposed to “iterative multisets”. In a flat multiset, the
elements are taken from some domain which may not consist of other
multisets. The iterative multisets have elements which are multisets
themselves, and the collection iterative multisets is generated in a well-
founded manner.

Blizard 1988 develops an axiomatisation of iterative multisets with
finite occurrences. The theory is a two-sorted, first-order theory. The
two sorts N and M , represent the natural numbers and multisets respec-
tively. The natural numbers are given by the Peano axioms. Member-
ship is interpreted as a ternary predicate − ∈− −, where the intended
interpretation of x ∈n y is that x occurs exactly n times in y. The
axioms for multisets are then chosen so that one can reconstruct ZFC
internally as the multisets where each element occurs at most once.

In this paper, we will take a different view on elementhood of multi-



2. NOTATION AND BACKGROUND 27

sets compared to Blizard. Instead of a ternary relation, we will keep the
∈-relation binary and invoke the propositions-as-sets attitude of Martin-
Löf type theory.

In Martin-Löf type theory one does not generally distinguish the
notion of set from the notion of proposition. The notion of a set, as
given by its canonical elements, corresponds exactly to the notion of a
proposition as given by its canonical proofs. This leads us to give the
binary relation ∈ the typing ∈ : M → M → Type. Thus, for given
x, y : M , we have that x ∈ y is a set. The natural interpretation is that
x ∈ y is the set of occurrences of x in y.

Taking the idea of using types to capture the number of occurrences
further, we need a notion of equivalence of type. This is where Uni-
valent Type Theory enters the picture. Voevodsky’s univalence axiom
expresses5 that an identity between type is exactly (equivalent to) an
equivalence. For types which are mere sets this means that two mere
sets are identified if there is a bijection between them.

The model of multisets which we present in this paper is derived
from a model of constructive set theory by Aczel 1978. The multiset
model can in fact be seen as a description of what Aczel’s model looks
like through the eyes of type theory with the Univalence Axiom.

2 Notation and background

The following article is set with type theory as its intended metatheory.
Some results depend on the Univalence Axiom, and are marked as such.
Part of the article is formalised in Agda6, in particular the more technical
lemmas leading up to the extensionality theorem and the extensionality
theorem itself. However, this article is self contained, and even the
proofs for which there exists a formalisation are here presented in usual
mathematical writing.

In ways of notation we will mostly use standard type theoretical
notation, but written out as informal constructive mathematics in the
style of the homotopy type theory book7, rather than giving formal
derivations. Our notation deviate a bit from the book in ways mentioned
below. Mostly, these deviations take us close to how type theory is
written in a formal proof system, such as Agda or Coq.

5Awodey, Pelayo, and Warren 2013, gives an exposition.
6Gylterud 2016, in the references contains a URL to the source code of the

formalisation.
7Univalent Foundations Program 2013.
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Application of functions and instantiation of dependent types are de-
noted by juxtaposition—e.g. f a or B a—leaving a small space between
the function or type and their argument.

We use A : Type to denote that A is a type.
Definitions are signified by := with the type of the term often listed

on the line above the definition. Definitional equalities are denoted by
≡.

The equality sign = is used to denote various equivalence relations
— each time identified with a subscript, unless clear from the context.
We will use the notation Id for the identity type. We denote disjoint
union by ∨ or +, and binary products by ∧ or ×.

We follow the book8 in the definition of equivalence of types, A � B,
homotopy of functions, f ∼ g, and notions such as contractible, mere
proposition, mere set, and n-type. For the basic properties of these
notions we refer the reader to (Univalent Foundations Program 2013).

Many proofs involve showing equivalences of types, which we strive
to demonstrate, as far as possible, using chains of simpler type-algebra
equivalences, such as (

∏
a:A
∑

b:B a C a b) �
(∑

f :
∏

a:A B a

∏
a:A C a (f a)

)
.

It is is worth noting that we will consider quantifiers, such as ∀,∃,∏
and

∑
to bind weakly, so that for instance

∏
x:a P x → Q x disam-

biguates to
∏

x:a(P x → Q x) rather than (
∏

x:a P x) → Q x. We some-
times will add the parenthesis to emphasise this.

3 The model

In this section we recall Aczel’s model of constructive set theory, delve
into homotopy type theory and construct a model of multiset theory.

3.1 Aczel’s model

The idea behind the construction of Aczel’s V type in Aczel 1978 is
that, given a universe U : Type with decoding type T : U → Type,
one can construct a setoid which captures the iteratively generated sets,
where each set has an index of its elements in U . An element can be
listed more than once in the index of the set. The equality relation
of the setoid removes the distinction between equal sets with different
representations, making sets equal if they have the same elements.
Definition A:1. Given a universe U , with decoding function T : U →
Type, let Aczel’s V be the setoid defined as follows.

8Univalent Foundations Program 2013.
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V : Type
V := Wa:U Ta

=V : V → V → Type

(sup a f) =V (sup b g) :=

⎛⎝∏
i:T a

∑
j:T b

(f i) =V (g j)

⎞⎠ ∧

⎛⎝∏
j:T b

∑
i:T a

(f i) =V (g j)

⎞⎠

The way to look at a canonical element x ≡ (sup a f) : V is that a
is a code for the index of elements in x and f : Ta → V picks out the
elements (i.e. sets) contained in x.

Remark. A:2. Notice that the relation =V is U -small, if U has Σ-
types and Π-types. That is, one can prove by W-induction that for each
pair of elements x, y : V , there is a code in U for the type x =V y. This
is important, since we want to use equality to construct indices for new
sets.

Definition A:3. Let elementhood in Aczel’s V be defined as follows.

∈ : V → V → Type (1)

x ∈ (sup b g) =
∑
i:T b

x =V (g i) (2)

Remark. A:4. Since the relation =V is U -small, it follows that the
relation ∈ is also U -small.

Aczel goes on to prove that the setoid (V,=V ), with the relation
∈, is a model of Constructive Zermelo-Fraenkel set theory (CZF). In
this paper, we take a different path, and ask the question: What is the
nature of elements in V , without taking the quotient of =V , and instead
considering the identity type on V ?

As noted, a set in V may have the same element listed several times,
but the equality =V erases the distinction between representations that
just differ by the number of times they repeat elements. However we
cannot expect the identity type to do the same. Thus, we expect that the
result will be more like multisets, possibly with the obstacle that order
of elements may play a role. As we will see, this obstacle is overcome by
the univalence axiom.
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3.2 The identity type on W-types

The following result is due to Nils Anders Danielsson9. The result char-
acterises the W-type of a type family B : A → Type, in terms of the
identity type of A and B, up to equivalence. The lemma does not make
use of the Univalence axiom and can be carried out in plain Martin-Löf
type theory.

A technical detail is that the proof as it stands, relies on η-reduction.
The justification for this is that we take the function type in the W-
type to be the Π-type of the logical framework, in which η-reduction is
customary10. This is also how it is implemented in Agda. However one
can carry out the proof without appeal to the η-reduction, as η-reduction
holds up to provable equality (See page 62 of Nordström, Petersson, and
Smith 1990).

Definition A:5. Given A : Type and B : A → Type, and an element
x : WAB we denote by x̄ : A, and x̃ : Bx̄ → WAB the operations given
by (sup a f) ≡ a and ˜(sup a f) ≡ f .

Lemma A:6. For any A : Type and B : A → Type, and all x, y : WAB,
there is an equivalence

IdWAB x y �
∑

α:IdA x y

Id x̃ (Bα · ỹ)

3.3 A model of multisets

We will now present our model of transfinite, iterative multisets, given
a univalent universe U : Type with decoding function T : U → Type.
It consists of a type M of multisets, an equality relation =M and a
relation ∈, which expresses elementhood. The type M is the same W -
type as Aczel’s V . The equality, however, is logically stricter than Aczel’s
equality, and, as we will show, equivalent in a strong sense to the identity
type of M .

Definition A:7. We define

M : Type by
M := Wa:U Ta

9Danielsson 2012, only available on-line.
10Martin-Löf 1984.
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and

=M : M → M → Type by

(sup a f) =M (sup b g) :=
∑

α:T a�T b

∏
x:T a

(fx) =M (g (α x))

and

∈ : M → M → Type by

x ∈ (sup b g) :=
∑
i:T b

x =M (g i),

Remark: A:8. Observe that if U has Π-types, Σ-types and identity
types, then =M and ∈ are U -small, just like their corresponding relations
in Aczel’s V .

3.4 Equality and the identity type

Theorem A:9. (UA) For each x, y : M , we have (x =M y) � (IdM x y).
Proof. By W-induction. Assume a, b : U and f : Ta → M and g : Tb →
M . Then

(sup a f) =M (sup b g) ≡
∑

α:T a�T b

∏
x:T a

(fx) =M (g(αx))

Induction hypothesis �
∑

α:T a�T b

∏
x:T a

Id (f x) (g(αx))

Definition of ∼ ≡
∑

α:T a�T b

f ∼ g · α

Extensionality �
∑

α:T a�T b

Id f (g · α)

Univalence �
∑

α:a=b

Id f (g · Tα)

Lemma A:6 � Id (sup a f) (sup b g)

The following lemma is important with respect to constructing mul-
tisets from logical formulas, in analogy to the comprehension axiom of
set theory. We assume that our universe has +, Σ and Π-types, so if we
can only prove that the base relations =M and ∈ also live in the uni-
verse, then we can interpret all bounded first order formulas as families
of types in U , indexed by some product of M with it self. Thus we have
the following lemma:
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Lemma A:10. IdM is essentially U -small, in the sense that for every
x, y : M there is an code ι x y : U such that T (ι x y) � IdM x y.

3.5 Extensionality

In set theory, the axiom of extensionality expresses that two sets are
considered equal if they have the same elements. More precisely, two
sets x and y are equal if for any z we have that z ∈ x iff z ∈ y. This
formulation of extensionality fails for multisets, but a very similar ex-
tensionality axiom may be formulated.

The principle of extensionality for multisets: Two multisets x
and y are considered equal if for any z, the number of occurrences of z in
x and the number of occurrences of z in y are in bijective correspondence
(in our symbolism: z ∈ x � z ∈ y).

We will now prove a strong version of this principle for our model.
The crucial part of this is summarised in the following lemmas, concern-
ing the fibres of functions.

Definition A:11. Given a function f : A → B we define Fibre f : B →
Type by Fibre f b :=

∑
a:A Id (f a) b

Lemma A:12. Given function extensionality, for any A, B, C : Type,
and functions f : A → C and g : B → C, the following equivalence
holds:

( ∑
α:A→B

g ◦ α ∼ f

)
�
(∏

c:C
Fibre f c → Fibre g c

)
(3)

Proof. We define the maps γ and δ as follows:

γ :
( ∑

α:A→B

g ◦ α ∼ f

)
→
(∏

c:C
Fibre f c → Fibre g c

)
γ (α, σ) c (a, p) := (σa, σa · p)

δ :
(∏

c:C
Fibre f c → Fibre g c

)
→
( ∑

α:A→B

g ◦ α ∼ f

)
δ F := (λa.π0(F (f a)(a, refla)), λa.π1(F (f a) (a, refla)))

Unfolding the definitions shows that δ (γ (α, σ)) ≡ (α, σ) (up to η-
reduction). Id-induction on the fibres of f shows that γ (δ F ) ∼ F .
Thus, by function extensionality, we have the desired equivalence.
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Lemma A:13. Given function extensionality, for any A, B, C : Type,
and functions f : A → C and g : B → C, the following equivalence
holds:

( ∑
α:A�B

g ◦ α ∼ f

)
�
(∏

c:C
Fibre f c � Fibre g c

)
(4)

Proof. The proof goes by showing that the equivalence constructed in
A:12 preserves equivalences. Since being an equivalence is a (−1)-type,
the resulting restriction of A:12 to equivalences is again an equivalence.

Let γ and δ be as in A:12, and denote by γ’ and δ’ the same construc-
tion, but with f and g having exchanged roles. First step is to show that
for all α : A → B and σ : g ◦α ∼ f , if α is an equivalence, then for every
c : C the function γ (α, σ) c : Fibre f c → Fibre g c is an equivalence.
Let Fc := γ (α, σ) c. We construct the inverse F −1

c := γ′ (α−1, σ′), where
σ′ : f ◦ α−1 ∼ g is the proof obtained by reversing σα−1 : g ◦ α ◦ α−1 ∼
f ◦ α−1 and composing with the proof that g ◦ α ◦ α−1 ∼ g. That F −1

c

is indeed an inverse of Fc can be verified by Id-induction on the fibres
of f and g respectively.

We then show that for all F such that F c : Fibre f c → Fibre g c
is an equivalence for all c : C, the function π0(δ F ) : A → B is an
equivalence. Let α := π0(δ F ). Its inverse is given by α−1 := π0(δ′(F −1),
and the fact that it is an inverse of α stems from the fact that for
any a : A and c : C and h : Id (f a) c we have that the transport of
(a, reflfa) : Fibre f (f a) along h is (a, h), and likewise for g.

Theorem A:14. (UA) Given x, y : M , the following equivalence holds.

(x =M y) �
∏
z:M

(z ∈ x � z ∈ y) (5)

Proof. From Theorem A:9 we deduce that x ∈ (sup A f) � Fibre x f .
This allows us to reformulate the above equivalence to be an instance of
Lemma A:13.

4 Multiset constructions

Aczel’s V is a model of CZF. To mirror this we look at axioms of con-
structive set theory, and attempt to find corresponding axioms for mul-
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tisets. The main observation is that definite axioms11 can be systemat-
ically changed to axioms which makes sense for multisets, by carefully
strengthening logical equivalence,↔, to equivalence in type theory �. A
feature of this conversion is that for the axioms below, we can retain the
constructions from Aczel’s V when we prove that the changed axioms
hold for M .

The axioms we will have a look at are

• Extensionality

• Restricted separation

• Union Replacement

• Pairing & singletons

• Infinity.

• Exponentiation / Fullness

• Collection.

4.1 Restricted separation

The axiom of restricted separation says that we can select subsets by use
of formulas, as long as they are bounded. For multisets, this corresponds
to that we may multiply the number of occurrences by the family of sets
represented by the formula, as long as the family is U -small.

(RSEP) ∀x∃u∀z (z ∈ u ↔ (z ∈ x ∧ P ))

where P is a restricted formula where u does not occur freely in P .
The formulation of RSEP in first order logic can be translated into

type theory, given our domain M , replacing ↔ with �.

Proposition A:15.

(M − RSEP)
∏
x:M

∑
u:M

∏
z:M

(z ∈ u � (z ∈ x ∧ T (P z))) ,

where P : M → U , is a U -small family.

11An axiom is definite if any set it claims existence of is characterised
uniquely.
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Proof. Define

Sep : (M → U)→ M → M (6)

Sep P x := sup
(∑

i:T x̄

P (x̃ i)
)
(x̃ ◦ π0) (7)

We must show that for all x and P , that for every z we have z ∈
Sep P x � z ∈ x ∧ T (P z).

We have:

z ∈ Sep P x ≡
∑

p:
∑

i:T x̄
T (P (x̃ i))

x̃(π0 p) =M z (8)

�
∑
i:T x̄

∑
q:T (P (x̃ i))

x̃(π0 (i, q)) =M z (9)

≡
∑
i:T x̄

∑
q:T (P (x̃ i))

x̃ i =M z (10)

≡
∑
i:T x̄

(T (P (x̃ i)) ∧ x̃ i =M z) (11)

�
∑
i:T x̄

(x̃ i =M z ∧ T (P (x̃ i))) (12)

�
∑
i:T x̄

(x̃ i =M z ∧ T (P z)) (13)

�
(∑

i:T x̄

x̃ i =M z

)
∧ T (P z) (14)

≡ z ∈ x ∧ T (P z) (15)

4.2 Union-replacement

In Aczel and Rathjen 2001, the authors introduce the axiom of Union-
Replacement. We use this axiom instead of separate union and replace-
ment axioms as it seems a more natural construction to use. For multi-
sets it says that if we have a family of multisets, indexed by a multiset,
we can take their multiset union.

(UR) ∀a (∀x ∈ a∃b∀y (y ∈ b ↔ Q(x, y))
→ ∃c∀y (y ∈ c ↔ ∃x ∈ a Q(x, y)))

Rendering this in type theory and applying the translation to mul-
tisets we get:
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Proposition A:16.

(M − UR)
∏
a:M

⎛⎝∏
i:T ā

∑
b:M

∏
y:M

(y ∈ b � Q (ã i) y)

⎞⎠
→
∑
c:M

∏
y:M

(
y ∈ c �

∑
i:T ā

Q(ã i) y

)

where Q : V → V → Set is any relation.

Proof. We define

UnionRep : (a : M)→ (ā → M)→ M (16)

UnionRep a f := sup
(∑

i:T ā

(f i)
) (

λp. ˜f (π0 p) (π1 p)
)

(17)

Let us fix a : M . Then, from the assumption of∏
i:T ā

∑
b:M

∏
y:M (y ∈ b � Q (ã i) y), we can extract f : T ā → M such

that for all i : T ā and all y : M we get y ∈ (f i) � Q (ã i) y. What we
then need, is to show that for every y : M we have y ∈ (UnionRep a f) �∑

i∈T ā Q(ã i) y.
We have

y ∈ (UnionRep a f) ≡
∑

p:
∑

i:T ā
f i

˜f (π0 p) (π1 p) =M y (18)

�
∑
i:T ā

∑
j:T f i

(̃f i) j =M y (19)

≡
∑
i:T ā

y ∈ (f i) (20)

�
∑
i:T ā

Q(ã i) y (21)

4.3 Singletons

In set theory, singletons are usually constructed by pairing an element
with itself. For multisets defining singletons from pairs would not work,
as the resulting multiset would contain the element twice, not once. We
therefore will prove that our model has singletons.

If we were to have a singleton axiom in set theory, it would look like:
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(SING) ∀a∃b∀z (z ∈ b ↔ z = a)

Which for our multisets becomes:

Proposition A:17.

(M − SING)
∏
a:M

∑
b:M

∏
z:M

(z ∈ b � z =M a)

Proof. We define

Sing : M → M

Sing a := sup 1 (λi.a)

and prove that for every a, z : M we have (z ∈ Sing a) � (z =M a).

z ∈ Sing a ≡
∑
i:1
(λi.a) i =M z (22)

≡
∑
i:1

a =M z (23)

≡ 1 ∧ (a =M z) (24)
� z =M a (25)

Notation: We will from now on use the notation {a} := Sing a.

4.4 Pairing

The axiom of pairing,

(PAIR) ∀a∀b∃c∀z (z ∈ b ↔ (z = a ∨ z = b)) ,

becomes

Proposition A:18.

(M − PAIR)
∏
a:M

∏
b:M

∑
c:M

∏
z:M

(z ∈ c � (z =M a ∨ z =M b))
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Proof. First, define

p : M → M → 2→ M (26)
p a b (l ∗) := a (27)
p a b (r ∗) := b (28)

Then, let us define

Pair : M → M → M

Pair a b := sup 2 (p a b)

It remains to show that for all a, b, z ∈ M we have z ∈ (Pair a b) �
(z =M a ∨ z =M b).

z ∈ (Pair a b) ≡
∑
i:2

p i =M z (29)

� p (l ∗) =M z ∨ p (r ∗) =M z (30)
≡ a =M z ∨ b =M z (31)
� z =M a ∨ z =M b (32)

Notation: We will from now on use the notation {a, b} := Pair a b.

Lemma A:19. For all a, b, a′, b′ : M ,

{a} =M {a′} � a =M a′ (33)
{a, b} =M {a′, b′} �

(
(a = a′ ∧ b = b′) ∨ (a = b′ ∧ b = a′) . (34)

Example A:20. The singleton with two elements
Observe that ({∅, ∅} = {∅, ∅}) � 2. This leads to the perhaps sur-

prising fact that

({∅, ∅} ∈ {{∅, ∅}}) � 2. (35)

This might leave us feeling a bit uneasy, as this is supposed to be a
singleton, not a “doubleton”, but we will see later (Example A:29) how
to construct a multiset in which {∅, ∅} occurs but once, and that this
construction is somewhat like a quotient of the singleton. For the time
being we accept this slight anomaly as a consequence of our rules.
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Remark: A:21. Using singletons, pairs and union we can construct
any finite tupling of elements of M . As we see from the binary case
(A:19), the induced mapping Mn → M is not an embedding.

4.5 Ordered Pairs

In set theory there are many equivalent ways to encode ordered pairs
from unordered pairs. The most common one, the Kuratowski encoding,
defines 〈a, b〉 = {{a}, {a, b}}. It satisfies the characteristic property, that
for all a, b, a′, b′,

〈a, b〉 = 〈a′, b′〉 ↔
(
a = a′ ∧ b = b′) (36)

To understand ordered pairs of multisets, we should therefore require
that for all a, b, a′, b′ : M

〈a, b〉 = 〈a′, b′〉 �
(
a =M a′ ∧ b =M b′) (37)

However, this is not satisfied by mimicking the Kuratowski encoding.
We can see this by letting a = b = a′ = b = ∅. Given this, we can
calculate that {{a}, {a, b}} =M {{a′}, {a′, b′}} � 2, while
(a =M a′ ∧ b =M b′) � 1.

In stead of the Kuratowski encoding, we use the older definition
of Wiener 1914, 〈a, b〉 = {{{a}, ∅}, {{b}}}, which harmonises with the
multiset version of the characteristic property.

Proof. Observe that {{a}, ∅} �=M {{b}} and {a} �=M ∅. So we get that

〈a, b〉 =M 〈a′, b′〉 ≡ {{{a}, ∅}, {{b}}} =M {{{a′}, ∅}, {{b′}}} (38)
� {{a}, ∅} =M {{a′}, ∅} ∧ {{b}} =M {{b′}} (39)
� ({a} =M {a′} ∧ ∅ =M ∅) ∧ ({b} =M {b′}) (40)
� a =M a′ ∧ b =M b′ (41)

4.6 Cartesian products

We obtain the cartesian product of two multisets by nesting UnionRep
around pairing.
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Definition A:22. Given a, b : M define

a × b := UnionRep a (λi.UnionRep b (λj.〈ã i, b̃ j〉)) (42)

Each pairing can occur multiple times in the cartesian product. To
be precise 〈x, y〉 ∈ (a × b) � (x ∈ a)× (y ∈ b).

4.7 Functions

There are several choices one could make as to what constitutes a func-
tion between multisets. Just like in set theory, where a function between
sets is it self a set—namely a set of pairs—we should like functions be-
tween multisets themselves to be multisets. Therefore, a given pair 〈x, y〉
cannot occur an unbounded number of times in a function, as we then
would have problems collecting functions into exponential multisets.

The weakest notion of a function between two multisets is just a map
of occurrences. We will refer to this as a “multiset operation”. Often
one consider the stricter notion which sends equal occurrences to equal
occurrences. This notion we will denote by “multiset function”. As we
will now see, we can express both in our model.

In the model, the notion of a multiset operation between sup A f and
sup B g corresponds exactly to a map φ : A → B, and the stricter notion
adds the requirement that if f a =M f a′ then g (φ a) =M g (φ a′). The
stricter notion corresponds to functions in Aczel’s V , but the weaker
notion is equivalent to the stricter notion in the case of sup A f and
sup B g being sets, in the sense of A and B being of type level 0 and f
and g being injections. Therefore, we can consider both an extension of
the notion of function to multisets.

The question we will now entertain is: How to capture these two no-
tions in the kind of formulas we have so far considered for other axioms?
Starting with the operations, we remind our selves that, for iterative
sets, a function f : A → B is a subset of A × B, such that the pro-
jection down to A is a bijection. Having equivalences available in our
language, we can use the fibrewise equivalence lemma12 to describe the
corresponding situation for multisets.

Definition A:23. We define the weak notion of a multiset function as

12Lemma A:13
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follows.

Operation : M →M → M → Set

Operationa b f :=
(∏

z

z ∈ f →
∑

x

∑
y

z = 〈x, y〉
)

∧
(∏

x

x ∈ a �
∑

y

〈x, y〉 ∈ f

)

∧
(∏

y

y ∈ b ←
∑

x

〈x, y〉 ∈ f

)

Observe that weakening the � to↔ does not give the usual definition
of a function for sets, but rather that of a total binary relation. Total
binary relations form a set in classical set theory, but in CZF this is
weakened to the subset collection axiom which states that there is a set
of total relations in which every total relation has a refinement. We will
later prove that the collection of multiset operations form a multiset,
and this should be seen a form of subset collection / fullness.

Definition A:24. We define the notion of a multiset function as follows.

Function : M → M → M → Set

Functiona b f := Operationa b f ∧
∏

x,x′,y,y′

(
〈x, y〉 ∈ f ∧ 〈x′, y′〉 ∈ f

)
→ x = x′ → y = y′

4.8 Fullness, subset collection and operations

In constructive set theory the axiom of fullness states that for each pair
of sets a,b there is a set of total relations from a to b such that any total
relation has a restriction to these. The equivalent (relative to the rest of
the axioms of CZF) axiom of subset collection is a variation of fullness
which avoids the complication of using pairs to encode relations.

(SUB − COLL) ∀a, b∃u∀v(∀x ∈ a∃y ∈ bQ(x, y)
→ ∃z ∈ u(∀x ∈ a∃y ∈ zQ(x, y) ∧ ∀y ∈ z∃x ∈ aQ(x, y)))

An unfortunate feature of the subset collection axiom is that it states
the existence of certain sets without defining them uniquely. Classically,
the sets of functions would satisfy the property of fullness. In fact, the
requirement that the set of functions satisfying the fullness property is
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equivalent to the axiom of choice. This raises the question of what the
constructive nature of this set really is.

Some insight on the matter can be found by studying Aczel’s model
of CZF in type theory. There the underlying type of the subset collection
set between sup A f and sup B g is the function type A → B. In other
words, the subset collection sets are sets of operations. However, the
first order language of set theory is extensional, and thus unable to
exactly pin down what an operation is, thus the sets of which the axiom
claim existence are left indefinite by the axiom itself. In this respect,
the axiom for multisets, in our language where we have borrowed the
connective � from type theory, stating the existence of multisets of
operations is a refinement of collection/fullness into a definite axiom,
namely exponentiation for operations.

4.9 Exponentiation

We define the exponential of two multisets.

Definition A:25. Let a, b : M be multisets and define

Exp a b : M

Exp a b := sup (ā → b̄) (λf. sup ā (λi.〈ãi, b̃(fi)〉))

Next, we formulate the exponentiation axiom for multisets and prove
that there exists a multiset in our model satisfying this axiom.

Proposition A:26.

(M − EXP)
∏
a:M

∏
b:M

∑
c:M

∏
z:M

(z ∈ c � (Operationa b z))

Proof. Let c be Exp a b. Thus, we need to prove that for any given
z : M , there is an equivalence Operationa b z � z ∈ Exp a b. We will
give this equivalence in two steps. (A heuristic reason for why we need
to jump through a hoop here is that Operationa b z has three factors
while z ∈ Exp a b has two (dependent ones), and we cannot construct
the equivalence factorwise. We therefore construct a more finely grained
equivalent which maps factorwise to both.)

Step 1. The type Operationa b z is equivalent to the following data:

• α : ā →∑
x,y:M 〈x, y〉 ∈ z

• β :
∑

x,y:M 〈x, y〉 ∈ z → b̄



4. MULTISET CONSTRUCTIONS 43

• ε : α ◦ π0 = ã, where π0 :
∑

x,y:M 〈x, y〉 ∈ z → M extracts the x
component.

• δ : β ◦ b̃ = π1, where π1 :
∑

x,y:M 〈x, y〉 ∈ z → M extracts the y
component.

• π0 ◦ π1 ◦ π1 :
∑

x,y:M 〈x, y〉 ∈ z → z̄, which extracts the z-index, is
an equivalence.

This data can be succinctly expressed by the following commutative
diagram:

ā

ã

��

α
� ��∑

x,y:M 〈x, y〉 ∈ z

π0

��

π1

��

β �� b̄

b̃

��
M M

(43)

The type Operationa b z is a product of three factors. The first factor
is equivalent to π0 ◦π1 ◦π1 :

∑
x,y:M 〈x, y〉 ∈ z → z̄ being an equivalence,

since it says that all elements of z are pairs. The second factor is equiv-
alent to the data α and ε above, by the fibrewise equivalence lemma
(Lemma A:13). Similarly, the third factor is equivalent to the data β
and δ. Thus, we conclude that Operationa b z is indeed equivalent to the
above data.

Step 2. The data given in step 1 is equivalent to z ∈ Exp a b, which
is to say that z is equal to the graph of a map ā → b̄.

∑
x,y:M 〈x, y〉 ∈ z

λ(x,y,p)→〈x,y〉

��

π0◦π1◦π1 �� z̄

z̃

��
M

(44)

Given the data in step 1, define f : ā → b̄ by f := β ◦ α. Since
π0 ◦ π1 ◦ π1 :

∑
x,y:M 〈x, y〉 ∈ z → z̄ is an equivalence, which makes the

diagram (44) commute, we derive that
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z = sup ā (λi.〈π0 (α i), π0 (π1 (α i))〉) (45)
= sup ā (λi.〈ã i, b̃ (β (α i))〉) (46)
= sup ā (λi.〈ã i, b̃ (f i)〉) (47)

which is precisely that z is the graph of f .
In the other direction, assuming that z = sup ā(λi.〈ã i, b̃ (f i)〉, we

observe that π0 ◦π1 ◦π1 :
∑

x,y:M 〈x, y〉 ∈ z → z̄ is in fact an equivalence,
and project the equivalence q : z̄ � ā from the assumed equality. We
then factor f into α := (q ◦ π0 ◦ π1 ◦ π1)−1 and β := f ◦ q ◦ π0 ◦ π1 ◦ π1.
The fact that the rest of the equalities of the data hold, follows from the
definition of α and β and that diagram (44) commutes.

That this construction is an equivalence is (tedious) routine verifica-
tion, from which we spare the reader.

In conclusion, combining the above two steps, we have constructed
an equivalence Operationa b z � z ∈ Exp a b.

4.10 Natural numbers

The natural number axiom is straightforward to translate, and the con-
struction is exactly the same as in Aczel’s model.

Applying the usual abbreviations,

S y z ≡ ∀x (x ∈ z ↔ (x ∈ y ∨ x = y))

which codes the relation z is the successor of y, and

Z z ≡ ∀x ¬x ∈ z,

coding z is zero – the axiom of infinity in set theory can be expressed
as:

(INF) ∃u∀z (z ∈ u ↔ (Z z ∨ ∃y ∈ u S y z))

For multisets we give similar definitions of S and Z, in order to define
an axiom of infinitity.

S y z :=
∏
x:M

(x ∈ z ∼= (x ∈ y ∨ x = y))

Z z :=
∏
x:M

¬x ∈ z
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Proposition A:27.

(M − INF)
∑
u:M

∏
z:M

⎛⎝z ∈ u ∼=

⎛⎝Z z ∨
∑
y:M

y ∈ u ∧ S y z

⎞⎠⎞⎠
Proof. The construction of a natural number object for M is the same
as the construction for Aczel’s V . We define a sequence of multisets
N : N → M , by

N 0 := ∅
N (n+ 1) := N n ∪ {N n}

And let our natural number object be u = sup NN . It just remains
to observe that u satisfies the condition of M − INF

z ∈ u ≡
∑
n:N

N n = z

∼= z = ∅ ∨
∑
n:N

N (Sn) = z

∼= z = ∅ ∨
∑
n:N
(N n ∪ {N n}) = z

∼= Z z ∨
∑
n:N

S (N n) z

∼= Z z ∨
∑
y:M

y ∈ m ∧ S y z

5 Homotopic aspects of M

The previous section might seem as though not much have changed going
from the sets V to the multisets M . In this subsection we will take a
look at what objects might be in M for which, since we work with the
identity type on M , higher homotopies come into play. First of all, we
observe that M has the same number of non-trivial levels of homotopy
as U has.

5.1 Homotopy n-type

Recall from the book “Homotopy Type Theory”13 that types can be
divided into levels, according to how many times one can iterate the

13Univalent Foundations Program 2013.
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identity type on the type before it becomes trivial, in the sense of being
contractible. A type is contractible if it has an element, which every
other element is (uniformly) equal to. This is captured by the following
definitions.

isContractible(X) :=
∑
x:X

∏
x′:X

x′ = x (48)

is−(−2)−type X = isContractible(X) (49)

is−(n+ 1)−type X :=
∏

x,y:X
is−(n)−type(Idx y) (50)

Proposition A:28. M has the same homotopy n-type as U .

Proof. If M is homotopy n-type, then U is also homotopy n-type. This
follows from the fact that the following map is an embedding.

ι : U → M (51)
ιa := (sup a (λa.∅)) (52)

On the other hand if U has homotopy n-type, then we show by W -
induction on M that M also has homotopy n-type.

Let x = (sup a f) and y = (sup b g), and consider Idx y. By Lemma
A:6 we know that:

Id x y �
∑

α:IdU a b

IdT a→W f (Bα · g) (53)

From W-induction we have the induction hypothesis that the image
of f has homotopy n-type, and by Theorem 7.1.8 in the book14., we
know that this Σ-type also has homotopy n-type,

5.2 HITs and multisets

If our universe has Higher Inductive Types (HITs), we can construct
multisets where the index set is a higher groupoid structure. An inter-
esting fact is that even if ā is a higher groupoid, we can still have that
x ∈ a is 1-type for all x .

14Univalent Foundations Program 2013.
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Example A:29. In Example A:20 we saw that the singleton construc-
tion unexpectedly gave singletons where the single element occurred
twice, because of its non-trivial equalities to itself in M . A solution to
this is to take the connected compontent of the element in M as the
index set of the singleton, instead of just 1, along with the inclusion
into M . However, this requires the connected component to be U -small,
which the usual construction does not guarantee. Adding that assump-
tion, which we conjecture could hold in general (in homotopical models),
since M is locally U -small, we can construct singletons even for elements
of M with non-trivial self-identities.

For any multiset x : M , such that there is t : U which represents
the connected component of x, i.e. α : T t � ∑

y:M ‖x =M y‖−1, we
can define a the singleton s x t α := sup t(π0 ◦ α). The map π0 ◦ α is
an embedding, since ‖x =M y‖−1 is a mere proposition. It follows that
the fibres y ∈ s x t α are all propositions, and in particular x ∈ s x t α is
contractible.
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From multisets to sets in
Homotopy Type Theory

Abstract

We give a model of set theory based on multisets in homo-
topy type theory. The equality of the model is the identity
type. The underlying type of iterative sets can be formulated
in Martin-Löf type theory, without Higher Inductive Types
(HITs), and is a sub-type of the underlying type of Aczel’s
1978 model of set theory in type theory. The Voevodsky Uni-
valence Axiom and mere set quotients (a mild kind of HITs)
are used to prove the axioms of constructive set theory for
the model. We give an equivalence to the model provided in
Chapter 10 of “Homotopy Type Theory” by the Univalent
Foundations Program.

1 Introduction

The first model of set theory in type theory is due to Aczel and models
the constructive set theory CZF15. The underlying type of sets in this
model is WU T , the type of all well-founded trees with branchings in a
universe U with decoding family T : U → Type. The interpretation of
equality in this model allows deduplication and permutation of subtrees
— incorporating the intuition that the order and multiplicity of elements
of a set are irrelevant. If we instead insist to interpret equality as the
identity type and assume the univalence axiom, the underlying type no
longer models set theory, but rather multiset theory.

In a related work16 we explore the notion of iterative multisets in
type theory. Here we will specialise from the general multisets to the
set-like ones, where each element occurs at most once. We will start by
summarising the model of multisets and its relation to Aczel’s model of
CZF in type theory17.

Once the notion of a multiset is defined, it is natural to study the
hereditary subtype of multisets where each element occurs at most once.
These are in a certain sense the most natural representations of iterative
sets from a homotopy type theory point of view. These are namely the

15Aczel 1978.
16Part A
17Aczel 1978.
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multisets for which the element hood relation is hereditarily, merely
propositional (type level −1).

In this text we explore how this type models various axioms of con-
structive set theory. We also show that it is equivalent to the higher
inductive type outlined in the book “Homotopy Type Theory”18.

1.1 From multisets to sets – two ways

Assume for a moment that we would like to explain the notion of multiset
to someone who knows the notion of a set. Here are two similar attempts
at such an explanation.

1.1.1 Variant A

A multiset is a generalisation of sets in which an element
may occur any number of times, not just at most once.

1.1.2 Variant B

A multiset is like a set with the extra information attached to
each element about how many times it occurs in the multiset.

The two descriptions are almost identical, but critically different.
Variant A describes the multisets as a more general concept than sets,
in the sense that a set is a special case of a multiset, namely those
multisets in which each element occurs at most once. Variant B, on the
other hand, describes a multisets as sets with some extra structure. In
both cases the impression given is that the multisets are, in an informal
way, a bigger concept than that of a set. Variant A says that sets are
just some of the multisets, while Variant B says that for each set there
are numerous ways to make a multiset from it.

In mathematics these two notions of “bigger” correspond to the no-
tion of

• sets being a subtype of multisets (Variant A)
• sets being a quotient of multisets (Variant B)

If we were to turn the direction of explanations, making them expla-
nations of the concept of a set from the notion of a multiset, the above
suggests two distinct routes of constructing a notion of sets from a no-
tion of multisets. We either identify the subtype of set-like multisets,

18Univalent Foundations Program 2013.
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or identify the equivalence relation of multisets which forgets the extra
structure of multiplicites.

Example B:1. The multiset {a, a, b} would not be considered a set-
like in the spirit of Variant A, since a occurs twice. On the other hand,
Variant B would contest that {a, a, b} and {a, b, b} would represent the
same set, since in both cases a and b are exactly the elements occurring
at least once.

If we denote by M the multisets, and VA and VB denotes the two
possible notions of sets arising from it, following Variant A and Variant
B respectively, we can draw the following diagram of the situation.

VA
� � �� M

����
VB

1.2 Outline

In Section 2 and 3 we set up a bit of framework to work within. Starting
from Section 4 we will follow the path of Variant A.

Section 5 will take us through the basic lemmas about the type
of iterative sets we define in Section 4. These lemmas are applied in
Section 6 to give proofs that our model satisfies the axioms of Myhill’s
Constructive Set Theory.

In Section 7 we consider the problem of interpreting the two collec-
tion axioms of Aczel’s CZF in our model.

In Section 8 we return to Variant B, which will make the relationship
with the approach taken in Chapter 10 of the book “Homotopy Type
Theory”19 clear.

1.3 Notation

In what follows we will adhere to the following notation. Some of our
notation is similar to that of the book “Homotopy Type Theory”20, while
some of it is inspired by the syntax of Agda.

19Ibid.
20Ibid.
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• Function application will be denoted by juxtaposition, as in f a.
Also, application of functions equipped with extra structure, such
as equivalences and embeddings, will be denoted by juxtaposition.

• Quantifiiers, such as ∀,∃,∏ and
∑
bind weakly. For instance,∏

x:M x ∈ a →∑
y:M y ∈ B ∧ P x y disambiguates to∏

x:M
(
x ∈ a →∑

y:M y ∈ B ∧ P x y
)

• The equality sign, =, denotes the identity type. We sometimes
equip it with a subscript emphasising which type the elements
belong to, as in a =A a′.

• Definitions are signified by :=.
• Judgemental equalities are denoted by ≡.
• The notation A : Type denotes that A is a type,
• The notation A : Set denotes that A is a type which is a mere set
and

• The notation A : Prop denotes that A is a type which is a mere
proposition.

• The type U is a universe, with decoding family T : U → Type.
We assume that this universe

– is univalent,
– contains the empty type, 0,
– is closed under Π-types,
– is closed under Σ-types,
– is closed under +-types,
– is closed under (−1)-truncation and
– is closed under taking quotients of mere sets by equivalence
relations.

• The notation eA denotes the empty function e : 0 → A. The
subscript is dropped when inferable from the context.

• The notation ap f refers to the usual function ap f : a = a′ →
f a = f a′

2 Types and propositions

One of the main features of Martin-Löf’s type theory is the interpretation
of propositions as types21. The presence of the identity type gives the
possibility of asking whether two proofs of a proposition are equal. A

21Martin-Löf 1984.
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type in which all elements are equal is called, in homotopy type theory,
a mere proposition.

The traditional interpretation of the existential quantifier in type
theory is by the sigma type

∑
a:A P a. A proof of an existential propo-

sition is thus a, p — a term a : A of the quantified domain paired with
a proof p : P a that the term has the correct property. It is clear that
since the existence is not necessarily unique, the type of such proof need
not be a mere proposition.

In homotopy type theory, one introduces a truncated existential
quantifier ∃(x : A)P a, which is constructed from

∑
a:A P a by adding

identifications of all elements in to make it a mere proposition. This
gives the following introduction and elimination rule:22

a : A b : B a
−−−−−−−−−−−−−−−−−−−−−−− ∃-intro

[a,b] : ∃(a:A)(B a)

x : ∃(a:A)(B a) y : ∃(a:A)(B a)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∃-quot

q : x = y

P : ∃(a:A)(Ba) → Prop
p : (a : A) → (b : B a) → P [a,b]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∃-elim
∃-elim P p : (x : ∃(a:A)(B a)) → P x

Clearly
∑

a:A(B a) → ∃(a : A)(Ba) holds for all A and B. The
opposite implication holds if

∑
a:A(B a) is a mere proposition – which is

to say that the existence is unique, with a unique proof.
The situation is similar for disjunctions. Traditionally, disjunction

is interpreted as disjoint union in Martin-Löf’s type theory, while homo-
topy type theory introduces a truncated variant. We will denote disjoint
unions by the operator + and the truncated disjunction by the operator
∨.

3 Models where equality is identity

In this section we define what an ∈-structure is, and give some basic
results on such structures in generality. We do this in order to adjust

22In these rules, written in an Agda-like notation, Prop refers to the type of
mere propositions.
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our expectation for the concrete model which will be main focus of this
work.

3.1 ∈-structures

Definition B:2. An ∈-structure is a pair (M,∈) where M : Set is a
mere set, and ∈:M → M → Prop.

Definition B:3. For any ∈-structure (M,∈) and element a : M, we
define E a :=

∑
x:M x ∈ a.

Definition B:4. An ∈-structure (M,∈) is called U -like if for each
a : M the type E a is essentially U -small. That is, if each a : M the
type E a has a code in U .

Remark B:5. An ∈-structure is basically a mere set with a merely
propositional, binary predicate defined on it. The natural equality to
consider for elements of such a structure is the identity type. This is in
contrast to the setoid approach taken by Aczel.

“U -like” is meant to mimic the traditional terminology, “set-like”,
used in set theory.

3.2 Translations of first-order logic into type theory

Definition B:6. Given an ∈-structure (M,∈) define two translations
of formulas of first-order logic to type theory, σM,∈ and τM,∈, by recur-
sion on formulas. We let Context denote contexts (finite lists of vari-
ables, Variable Γ denoting the variables in Γ) and let Formula Γ denote
formulas in a given context Γ : Context.

Starting with σM,∈, leaving out the subscripts for ease of reading:
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σ :
∏

Γ:Context
Formula Γ→ (Variable Γ→ M)→ Type

σ Γ (∀x φ) γ :=
∏
a:M

σ (Γ.x)φ (γ.a)

σ Γ (∃x φ) γ :=
∑
a:M

σ (Γ.x)φ (γ.a)

σ Γ (φ ∧ ψ) γ := σ Γφ γ × σ Γψ γ

σ Γ (φ ∨ ψ) γ := σ Γφ γ + σ Γψ γ

σ Γ (φ → ψ) γ := σ Γφ γ → σ Γψ γ

σ Γ⊥ γ := 0
σ Γ
 γ := 1
σ Γ (x ∈ y) γ := γ x ∈ γ y

σ Γ (x = y) γ := γ x =M γ y

where Γ.x denotes the context Γ extended with the variable x, and γ.a
denotes the function Variable (Γ.x)→ M which maps x to a.

We define τM,∈ analogously, only difference being in the clauses for
∨ and ∃:

τ :
∏

Γ:Context
Formula Γ→ (Variable Γ→ M)→ Type

τ Γ (∀x φ) γ :=
∏
a:M

τ (Γ.x)φ (γ.a)

τ Γ (∃x φ) γ := ∃(a :M) τ (Γ.x)φ (γ.a)
τ Γ (φ ∧ ψ) γ := τ Γφ γ × τ Γψ γ

τ Γ (φ ∨ ψ) γ := τ Γφ γ ∨ τ Γψ γ

τ Γ (φ → ψ) γ := τ Γφ γ → τ Γψ γ

τ Γ⊥ γ := 0
τ Γ
 γ := 1
τ Γ (x ∈ y) γ := γ x ∈ γ y

τ Γ (x = y) γ := γ x =M γ y

Example B:7. The axiom of union is translated differently by the two
translations:
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UNION :=∀x∃u ∀z z ∈ u ↔ ∃y ∈ x z ∈ y

σ () (UNION) =
∑
u:M

∏
z:M

z ∈ u ↔
∑
y:M

y ∈ x ∧ z ∈ y

τ () (UNION) =∃(u :M)
∏
z:M

z ∈ u ↔ ∃(y :M) y ∈ x ∧ z ∈ y

If the structure (M,∈) satisfies the extensionality axiom, then the
property

∏
z:M z ∈ u ↔ ∃(y :M) y ∈ x∧ z ∈ y completely characterises

u, making τ () (UNION) �∑u:M
∏

z:M z ∈ u ↔ ∃(y :M) y ∈ x∧ z ∈ y.
However,

∑
y:M y ∈ x ∧ z ∈ y is not always implied by ∃(y : M) y ∈

x ∧ z ∈ y so the two axioms remain distinct.

3.3 Axioms of set theory

The axioms of set theory contain a number of axiom schemas, such as
collection or replacement, or (restricted) separation. In set theory this
adds one axiom for each first-order formula. In type theory it is more
convenient to use the higher order features of type theory and regard
these as quantified over all predicates. The result is much stronger than
the original axiom scheme. In the following we will exploit this extra
strength.

Definition B:8. Given a structure, (M,∈), and a predicate
P : M → M → Type and an element m : M, we define σ-replacement
for P and m in (M,∈) to be the type
σP (a) ((∀x ∈ a∃!y P x y) → ∃b∀y(y ∈ b ↔ ∃x ∈ a P x y))m, where σP

is σ extended with the clause σ Γ (P x y) γ := P (γ x) (γ y), in order to
interpret the P as a predicate symbol.

Define τ -replacement in the same way, substituting τ for σ.

Proposition B:9. If an ∈-structure (M,∈) satisfies extensionality, σ-
replacement and has an ordered pairing operation 〈−,−〉 :M → M →
M, then the following choice principle, stemming from the so-called type
theoretic choice principle23, holds:

For any P :M → M → Type and a, b :M if

23The type theoretic choice principle is the fact that for all A, B and P , the
type (

∏
a:A
∑

b:B a P a b)→
∑

f :
∏

a:A
B a

∏
a:A P a (f a) is inhabited.
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∏
x:M

x ∈ a →
∑
y:M

y ∈ B ∧ P x y,

then there is a function f :M with domain a and codomain b such that∏
x:M P x (f x).

Proof: Given a,b and a proof p :
∏

x:M x ∈ a →∑
y:M y ∈ B ∧ P x y,

apply σ-replacement to a and the predicate P ′ : M → M → Prop
defined by

P ′ x z :=
∑

q:x∈a

z =M 〈x, π0 (p x q)〉

The resulting element ofM is a function with the desired properties.

Remark B:10. Proposition B:9 shows us that we cannot hope to have
a model satisfying all axioms of constructive set theory by interpreting
the existential quantifier as Σ-types while at the same time interpreting
equality as the identity type of a mere set. This is because the above
proposition shows that AC will hold, in this interpretation, and thus
if all other CZF axioms hold (in fact U -restricted separation and pair-
ing should suffice), Diaconescu’s theorem demonstrates that the law of
excluded middle holds (for all U -small propositions).

4 The model of iterative sets

We recall the definition, from Part A, of the type of iterated multisets
and the membership relation.

Definition B:11.

M := WU T

∈M : M → M → Set

x ∈M (sup a f) :=
∑
i:T a

f i = x

The elements of M are the iterative multiset in which another ele-
ment of M may occur any U -small number of times. This is expressed
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by the relation ∈M , as follows: Given x, y : M the type x ∈M y is the
type of occurrences of x in y. For instance, if (x ∈M y) � 2 then x
occurs twice in y.

What we would like to consider are the elements of M in which
every element occurs at most once. Such a multiset would be called
set-like. Being set-like could be expressed in different ways. The most
direct would be to say that y : M is set-like whenever x ∈M y is a mere
proposition for all other x : M . Another way to state this is to say that
the function mapping each instance of an element in y to the element it
represents is an embedding.

The iterative sets are those multisets which are hereditarily set-like.
On M we define the predicate itset, recursively, as follows.

Definition B:12.

itset : M → Type

itset (sup a f) := embedding f ∧
∏

i:T a

itset (f a)

For each x : M , whenever we have itset x, we say that x is an iterative
set.

A Σ-type then collects the type of iterative sets as a subtype of
M – with elementhood defined by the restriction of elementhood for
multisets.

Definition B:13. The type of iterative sets, V , is defined as the sub-
type of M of iterative sets, or V ≡∑x:M itset x.

We denote by ∈V the specialisation of ∈M to V , that is
x ∈V y := π0 x ∈M π0 y.

Notation B:14. We will permit ourselves a slight abuse of notation
when denoting elements of V . We will for the remainder of this article
use the notation sup a f to denote an element of V constructed by a : U
and an embedding f : T a ↪→ V .

Remark B:15. Checking that a multiset is an iterative set can be a
tedious task, since it has to be carried out on each level, but the next
section will give lemmas to make it easier to construct new iterative
sets.
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5 Basic results

In this section we clarify the basic properties of iterative multisets and
(V,∈V ). The most important of these is the extensionality of V with
respect to ∈V .

We start with reminding ourselves of the extensionality theorem for
multisets.

Theorem B:16. x =M y � ∏z:M ((z ∈M y) � (z ∈M y))
Proof: See Theorem A:14 in Subsection 3.5 of Part A.

Lemma B:17. The type itset x is a mere proposition for every x : M .
Proof: Immediate by induction on M and that embedding f is a

mere proposition.

Lemma B:18. The function ap π0 : (x =V y)→ (π0 x =M π0 y) is an
equivalence.

Proof: Simple consequence of itset being a mere proposition.

Lemma B:19. For any x : M and y : V we have that the type x ∈M

π0y is a mere proposition.
Proof: Assume y ≡ (sup a f, (p, q)). Observe that x ∈M π0y is the

fibre of f over y. Since p proves f to be an embedding, and embeddings
have propositional fibres, then x ∈M π0y is a proposition.

Lemma B:20.
(∏

z:V
(z ∈V x ↔ z ∈V y)

)
�
(∏

z:M
(z ∈M π0x ↔ z ∈M π0y)

)

Proof: Both sides of the equivalence are mere propositions, so it is
enough to show biimplication. Passing from right to left is trivial, so we
show only the implication from left to right.

Assume z : M . If z ∈ π0x then z must be an iterative set. Thus, z ∈
y which is to say z ∈ π0y. This demonstrates z ∈ π0x → z ∈ π0y. That
z ∈ π0y → z ∈ π0x is shown symmetrically. Hence, z ∈ π0x ↔ z ∈ π0y,
which completes the proof.



62 PART B: FROM MULTISETS TO SETS IN HOTT

Lemma B:21. Given a small type a : U and a function f : T a → V ,
there is a set image a f such that

• for each i : T a we have that f i ∈ (image a f)
• for any merely propositional predicate P : V → Set, given∏

i:T a P (f i) we can prove that
∏

z:V (z ∈ (image a f)→ P z).

Proof: Given a : U and f : T a → V . Take the image factorisation
of f , which can be expressed as a simple higher inductive type. Since V
is locally U -small, the image has a code b : U . Denote the injection of
the image into V by g : Tb → V , and define image a f := sup b v.

6 V models Myhill’s constructive set theory

In this section we prove that (V,∈V ) models the axioms of Myhill’s
Constructive Set Theory (CST), when the existential quantifiers are in-
terpreted as truncated. In fact, we shall see that except for a few critical
places, positive occurrences of the existential quantifier can be strength-
ened to

∑
, mostly because the constructions we make are explicit.

6.1 Extensionality

The lemmas we have proved line up to give the following equivalence:

Extensionality B:22. x =V y ↔ ∏
z:V (z ∈ x ↔ z ∈ y)

Proof:

x =V y � π0x = π0y (1)

�
∏
z:M

(z ∈M π0x � z ∈M π0y) (2)

�
∏
z:M

(z ∈M π0x ↔ z ∈M π0y) (3)

�
∏
z:V
(z ∈V π0x ↔ z ∈M π0y) (4)

6.2 The empty set, natural numbers

The empty set is given by ∅ := sup 0e. The natural numbers we con-
structed in Part A, Subsection 4.10 is indeed an iterative set.
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6.3 Separation

Restricted separation can be done in V without quotienting, as long as
the separating predicate is merely propositional. Thus, whenever we
separate a formula with existential quantifier in a positive position, the
existence must be unique or truncated. If there are more than one wit-
ness of the statement, the result would be a multiset where the element
occurs once per witness of the statement. The same is true for disjunc-
tion. Notice that if A + B is a proposition then A and B are mutually
exclusive (since l a and r b are always distinct).

Proposition B:23. For any U -small predicate P : V i → Prop, and
x : V there is u : V such that for any z : V we have z ∈ u ↔ (P z)× (z ∈
x).

Proof: Assume that x ≡ sup A f and let u := sup(
∑

a:A P (f a))(f ◦
π0). Since P◦f is a mere proposition π0 : (

∑
a:A P (f a))→ A is injective,

thus f ◦ π0 is injective.
If z ∈ u then z = f a for some a : A such that P (f a), and hence P z

and z ∈ x.
If p : P z and q : z ∈ x then let a := π0q, ((a, p), π1 q) will prove that

z ∈ u.

6.3.1 ∈-induction

Induction on V can be performed, even when the predicate is a general
type, not necessarily merely propositional.

Proposition B:24. For every predicate P : V → Type, if for each
x : V we have that

∏
y:V y ∈ x → P y implies P x, then we have P x for

every x : V .
Proof. By induction on V . Assume x ≡ sup A f then by induction

hypothesis P (f i) for every i : A. We must show that if y ∈ x then
P y. However, y ∈ x means that there is i such that y = f i so we can
transport the induction hypothesis to obtain P y. Thus, we have shown∏

y:V y ∈ x → P y, which implies P x by assumption.

6.4 Pairing and Union

In order to show pairing and union we will have to apply the image
construction, previously introduced (Lemma B:21). If we applied the
constructions of union and pairing for multisets which we defined in
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Part A, then the resulting multisets would not be set-like. Therefore, we
need a different construction, and the most natural is to take quotients
to make the multisets back into sets. The fact that quotienting was not
needed for multisets, may be an indication that iterative multisets is a
more natural notion than iterative sets to consider in type theory.

Definition B:25. Given x, y : V , we define {x, y} := image (1 +
1) (constx+ const y).

Proposition B:26. For any x, y : V and for each z : V we have that
z ∈ {x, y} ↔ ((x = z) ∨ (y = z))

Proof: Simple consequence of Lemma B:21.

Definition B:27. Given x : V , where x ≡ sup A f define
∪x := image (

∑
a:A(f a)) (λ〈i, j〉.(̃fi)j).

Proposition B:28. For any x : V and for any z : V , we have that
z ∈ ∪x ↔ ∃y (y ∈ x ∧ z ∈ y)

Proof: Simple consequence of Lemma B:21.

Remark B:29. The truncated existential quantifier in the above propo-
sition cannot be strengthened to a Σ-type, since it would mean con-
structing sections for almost arbitrary quotients.

6.5 Replacement

Proposition B:30. For any a : V and P : V → V → Prop, such that
for all x ∈ a there exists a unique y for which P x y, then there is b : V
such that for each y : V we have that y ∈ b if and only if there exists
x ∈ a such that P x y.

Proof: Given a = sup ā ã, the assumptions let us construct a map
T ā → V . Using Lemma B:21, we can construct its image in V , which
will have the desired properties.

Proposition B:31. For any a : V and F : V → V , there is y : V such
that for any z : V we have z ∈ b ↔ ∃(w : V ) z = F w.

Proof: Assume x ≡ sup a f and let b = image (F ◦ f), and apply
Lemma B:21.
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6.6 Exponentials

The construction of exponentials in this model is particularly easy, since
a set-theoretical function between two elements, (sup A f) and (sup B g),
of V boils down to a function in the type theory A → B. Instead of
giving a direct proof, we can lean on Part A, Subsection 4.9 in order to
prove the correctness of this construction.

6.6.1 Exponentiation

Exponentiation of sets is a special case of exponentiation of multisets.
For multisets, we defined24operationa,b f for every a, b, f : M , and
showed that there is a multiset Exp a b, such that
f ∈ Exp a b � operationa,b f . We will here show that whenever a, b, f :
V , we have operationπ0 a,π0 b (π0 f) if an only if Fun a b f , and that in fact
itset (Exp (π0 a) (π0 b)), in order to conclude that there is exponentiation
in V .

Lemma B:32. Whenever a, b, f : V , we have that
operationπ0 a,π0 b (π0 f)↔ Fun a b f .

Proof: Recall that25 for every a, b, f : M ,

operationa b f :=
(∏

z

z ∈ f →
∑

x

∑
y

z = 〈x, y〉
)

∧
(∏

x

x ∈ a �
∑

y

〈x, y〉 ∈ f

)

∧
(∏

y

y ∈ b ←
∑

x

〈x, y〉 ∈ f

)
If here it said ↔ instead of �, this would state that f is a total

relation between a and b. We thus have to show that this strengthening
is exactly the same as ensuring functionality of a total relation.

In the middle conjunction, x ∈ a is a mere proposition since a is an
iterative set by assumption. Thus,

∑
y〈x, y〉 ∈ f must also be a mere

proposition, and thus equivalent to ∃!(y : M)〈x, y〉 ∈ f . This is exactly
the requirement for a total relation to be functional.

Remark: Since operationπ0 a,π0 b (π0 f) and Fun a b f are both mere
propositions, the biimplication is also an equivalence of types.

24Definition A:24 in Subsection 4.7 of Part A
25ibid.
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Lemma B:33. For every a, b : V the multiset Exp (π0 a) (π0 b) is an
iterative set.

Proof: The definition of Exp a (π0b) is. . .

Exp (π0a) (π0b) := sup ((π0 a)→ (π0 b))
(λf. sup (π0 a)

(λi.〈(̃π0 a)i, (̃π0 b) (f i)〉))
Thus, we need to show that the function

λf. sup (π0 a) (λi.〈(̃π0 a)i, (̃π0 b)(f i)〉), which takes a function to its graph,
is injective, but this comes down to that a function is determined by its
graph, which follows from function extensionality.

Next, we need to argue that each graph of each function is itself an
iterative set. Assume that f : (π0 a) → (π0 b), then the function which
maps an element i : (π0 a) to 〈(̃π0 a) i, (̃π0 b) (fi)〉 is injective since π0 a

is an iterative set. Furthermore, 〈(̃π0 a) i, (̃π0 b) (f i)〉 is an iterative set
since both a and b are iterative sets. Thus, the graph of f is an iterative
set.

Proposition B:34. For every a, b : V there is a u : V such that for
any c : V there is an biimplication c ∈ u ↔ Fun a b c.

Proof: Direct from Lemma B:32, Lemma B:33, and exponentiation
in M26, letting u := Exp (π0a) (π0b)↔ Fun a b f .

7 Collection axioms

In this section we discuss the status of collection axioms of constructive
set theory in our model.

Neither strong collection, nor subset collection seem to hold in either
extreme interpretation of the existential quantifier (i.e. applying τ or
σ). Interpreting the existential quantifier as Σ-types forces us to make
arbitrary choices in an apparently unconstructive way. Interpreting the
existential quantifier as the truncated ∃, the assumptions become too
weak to work with.

We discuss two approaches to solving this problem. On the one
hand, we identify which existential quantifiers need to be weakened –

26(M-EXP) in Subsection 4.9, Part A
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and which have to remain strict – in order to get something like the col-
lection axioms to become provable for our model. On the other hand, we
identify axioms about the type theoretical universe, from which V was
constructed, from which we can derive collection and subset collection
in the truncated form.

7.1 Strong Collection

Together with subset collection, strong collection is the most subtle of
the axioms of constructive set theory. First of all because it is under-
specified: the strong collection axiom states the existence of a set, but
does not define it up to equality.

On an intuitive level, strong collection states that if we have shown
that for all elements of a set x there exists some element with a certain
property, then the proof is in some way an operation which should have
an image in V .

The problem is that the proof in first-order logic may not be uniform,
in the sense that the operation may not respect equality of elements.
However, this would not prevent us from taking its image.

In Aczel’s original model one can see this, as his V is a setoid and we
can talk about extensional operations on the underlying type. However,
our V has the identity type as its equality type. This means that if
we interpret the existential quantifier as the Σ-type, then any proof
operation will give rise to an actual function which respects equality.
The image of such an operation is naturally a multiset, and we have
seen how to quotient such a multiset to a set. The only wrinkle of
this approach is that the “strong part” of strong collection has to be
weakened by using a truncated existential quantifier.

7.1.1 Strong quantifiers

The following proposition is the rendering of strong collection in which
we, as far as our abilities go, interpreted the existential quantifier as
Σ-types.

Proposition B:35. For any predicate P : V → V → Type and every
a : V if

∏
x:V (x ∈ a)→∑

y:V P x y then there is b : V such that

1.
∏

x:V (x ∈ a)→∑
y:V y ∈ b ∧ (P x y)

2.
∏

y:V (y ∈ b)→ ∃(x : V ) x ∈ a ∧ (P x y)
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Proof: Given a ≡ sup ā ã, the assumptions let us construct a map
T ā → V . Using Lemma B:21, we can construct its image in V , which
will have the desired properties.

Remark B:36. It is well known that, in constructive set theory, col-
lection implies replacement, and that the converse implication does not
hold. But the strong version of replacement proven for our model in
Proposition B:30, formulated for a given ∈-structure, does in fact entail
the collection principle of Proposition B:35, for the same ∈-structure.

7.1.2 Weak quantifies

Aczel and Gambino (2006) discuss a general approach to interpret-
ing first-order logic into type theory. For any given interpretation in
their framework, they identify type theoretic principles corresponding
to strong collection and subset collection. Here we will, in a similar
fashion, give a sufficient principle for our model to satisfy strong collec-
tion in the sense of weak quantifiers.

Definition B:37. Collection Principle for a universe, U :
For every locally U -small B : Set, given a : U and P : T a →

B → Type, such that
∏

x:T A ∃(y : B)P x y then ∃(r : U)∃(β : T r ↪→
B)(
∏

x:T a ∃(y : T r)P x (β y)) ∧ (∏y:T r ∃(x : T a)P x y).

Proposition B:38. The collection principle for U implies strong col-
lection in the following sense:

For any predicate P : V → V → Type and every a : V if
∏

x:V (x ∈
a)→ ∃(y : V )P x y then there merely exists b : V such that

1.
∏

x:V (x ∈ a)→ ∃(y : V ) y ∈ b ∧ (P x y)
2.
∏

y:V (y ∈ b)→ ∃(x : V ) x ∈ a ∧ (P x y)

Proof: Apply the collection principle for U to P ◦ ā, to obtain the
mere existence r and β, which together form b := sup r β. 1. and 2.
follow from the property of the collection principle for U .

7.2 Subset Collection

Subset collection is the principle that for any pair of sets there is a
third set, such that each total relation between the two has an image
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in the third. The precise formulation of the axiom in first-order logic
is slightly complicated by the fact that one cannot quantify over all (or
even all definable) total relations in the middle of a formula. Therefore,
the axiom is an axiom schema quantified over ternary formulas, where
the first parameter is allowed to vary. Our formulation will be close to
the first-order formulation:

∀a, b ∃c ∀u (∀x ∈ a → ∃y ∈ b ∧ P u x y)
→ (∃d ∈ c ∧ (∀x ∈ a → ∃y ∈ d ∧ P u x y)

∧ (∀y ∈ d → ∃x x ∈ a ∧ P u x y)

In the above formula there are three existential quantifiers to inter-
pret, either as a Σ-type or as a truncated existential. At one extreme
it is possible to give all but the last existential quantifier the Σ-type
interpretation, truncating the last one.

Proposition B:39. For every predicate P : V → V → V → Type
and every a, b : V there is c : V such that for all u : V if

∏
x:V (x ∈ a)→∑

y:V P u x y then there is d ∈ c such that

1.
∏

x:V (x ∈ a)→∑
y:V y ∈ d ∧ (P u x y)

2.
∏

y:V (y ∈ d)→ ∃(x : V ) x ∈ a ∧ (P u x y)

Proof: Given a ≡ sup ā ã and b ≡ sup b̄ b̃, consider the function
γ : (ā → b̄) → V which maps each f : ā → b̄ to image(b̃ ◦ f) in V . Let
c := image γ, which will have the desired properties.

7.2.1 Weak quantifiers

In the same way we did for strong collection, we identify a principle of
subset collection for our universe which is sufficient to prove the trun-
cated variation of subset collection for our model.

Definition B:40. Subset Collection Principle for U :
For each a, b : U there merely exists c : U such that for every

P : T a → T b → Type such that
∏

x:T a ∃(y : T b)P x y, there ∃(r :
T c)(

∏
x:T a ∃(y : T r)P x (α y)) ∧ (∏y:T r ∃(x : T a)P x y)
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Proposition B:41. For every predicate P : V → V → V → Type and
every a, b : V , there merely exists a c : V such that for every u : V , if∏

x:V (x ∈ a)→∑
y:V P u x y then there merely exists d ∈ c such that

1.
∏

x:V (x ∈ a)→ ∃(y : V ) y ∈ d ∧ (P u x y)
2.
∏

y:V (y ∈ d)→ ∃(x : V ) x ∈ a ∧ (P u x y)

Proof: Apply the subset collection principle for U to a,b to obtain
the mere existence of c, and then use the property of c on the predicate
P u.

8 Equivalence with the HIT-formulation

Section 5.1 of Chapter 10 of the book “Homotopy Type Theory”27, is
dedicated to set theory in the context of homotopy type theory. The
iterative hierarchy is presented there, in the form of a higher inductive
type (HIT). Our V is a HIT-free alternative to this, and in this section
we show that the two types are equivalent.

The HIT formulation bears more than a slight similarity to Aczel’s
original construction of the iterative hierarchy in type theory. Both are
quotients of the type we call M . The difference is that while Aczel
uses the untruncated version of the quantifiers and leaves the quotient a
setoid, HTT uses the truncated quantifiers and postulates the existence
of a type with the identity type to match.

In this section we define the bisimulation relation on M of which
the V in HTT Chapter 10 can be seen a quotient. We show that this
quotient is equivalent to our V . The proof on this relies on a function,
iterative-image : M → V , which turns any multiset into an iterative set
by identifying all occurrences of each elements, having first applied the
process inductively on all elements.

Definition B:42. We define by induction on M the binary relation:

≈ : M → M → Type

(sup a f) ≈ (sup b g) :=
( ∏

x:T a

∃(y : T b)(f x ≈ g y)
)

×

⎛⎝∏
y:T b

∃(x : T a)(f x ≈ g y)

⎞⎠
27Univalent Foundations Program 2013.
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Definition B:43. We define by induction on M the function:

iterative-image : M → V

iterative-image (sup a f) := image a (iterative-image ◦f)

Lemma B:44. For each x : M we have that x ≈ iterative-image x.
Proof: For each element of x there is a corresponding element in

iterative-image x, since the type of elements of iterative-image x is a
quotient of the type of elements in x. In the other direction there
just merely exists an element of x for each element of iterative-image x,
since it was a quotient. However, this is sufficient to show that x ≈
iterative-image x.

Lemma B:45. For iterative sets ≈ is equivalent to the identity type.
That is, for every x, y : M given itset x and itset y, we have that x ≈
y → x =M y.

Proof: By W-induction. Let x ≡ sup a f and y ≡ sup b g, and
assume x ≈ y. By extensionality, it suffices to show that for any z : M
we have that z ∈M x if and only if z ∈M y.

In one direction, if z ∈M x we know that there is i : T a such that
z =M f i. Since z ∈M y is a mere proposition, we can assume from
x ≈ y that there is a j : T b such that f i ≈ g j. By inductive hypothesis,
f i ≈ g j → f i =M g j, and thus z =M g j which is to say z ∈M y.

The other direction is symmetric in x and y.

Proposition B:46. V � M/ ≈
Proof: Direct consequence of the previous two lemmas.

Remark B:47. That M/ ≈ is equivalent to the HIT formulation in
the book can be seen from Lemma 10.5.5 of “Homotopy Type Theory”28.
Thus, proposition B:46 shows that our V is indeed equivalent to the HIT
formulation of V .

28Ibid.
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Agda Formalisation

Abstract

The following is a formalisation of many of the proofs of
Part A and Part B in Agda. Agda is a proof-checker and
programming language based on dependent type theory and
pattern matching, which allow a very close correspondence
between the style of proofs in the article and the formalised,
machine-readable proof.
Some proofs are present both in the article and the for-

malisation, while others are only present in one of them.
Some proofs in the article are mere sketches, while the de-
tails are in the formalised proof.
The original motivation for starting this formalisation

was to make the details of Lemma A:13 in Part A clear.
In fact, the informal proof in the article only reached its
current form after the formal proof was completed. After
the formalised proof was done it was a lot easier to pick out
the important elements, which a human might be interested
in, hiding the tedious details behind the phrase “. . . can be
verified by Id-induction. . . ”.
A strength of Agda is that it gives easy access to term-

normalisation. Being able to normalise terms quickly opens
up for more experimentation to simplify proofs than if each
normalisation would be carried out by hand. In our devel-
opment this has manifested as simplifications of the proof of
Lemma A:6 and Lemma A:12 of Part A. Both of which were
first proved by more complicated path computations, but
once formalised, inserting the reflexivity proof various places,
idp, and allowing Agda to attempt unification, showed that
there were simplifications to be made.

1 Prerequisites

Proof-checkers are pieces of software, undergoing development for long
periods of time and therefore existing in many versions. Agda is no
exception, and it is a matter of fact that a proof formalised and checked
by one version may fail to check by the next version of Agda. This may
be due to introduction of errors in the new version, removal of errors
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from the previous version, or due to intended changes in syntax. It is
therefore of essence to specify along with any formalisation what version
of the proof-checker the code has been checked with. If the formalisation
depend on any library, such must also be specified with versions. In
practise, locating and installing old versions of all dependencies – and
all dependencies of dependencies, etc. – on a new system, may prove
difficult.

An alternative route, which requires some dedication, is to keep the
formalisation up to date with the latest changes in the proof-checker. At
the very least, one should aim to write the formalisation in such a way
that it is not only machine-readable, but also human-readable, so that
in case the specific version of the proof-checker should disappear, and
the code cease to verify on any available versions, the intention behind
the code should be clear so that any able reader can themself perform
the changes needed for the code to verify on a later version.

Our formalisation depends on the HoTT-Agda library, which is a
development of Homotopy Type Theory in Agda.

Prerequisite Tested versions URL
Agda 2.4.2.4 https://github.com/

agda/agda/archive/2.4.
2.4.tar.gz

HoTT-agda eb24ea20e1a28de31 https://github.com/
HoTT/HoTT-Agda/tree/
eb24ea20e1a28de31

2 Assumptions of the formalisation

Agda implements dependent type theory with pattern matching. Tradi-
tionally, the way pattern matching has been implemented allows proofs
of the uniqueness of identity proofs (UIP) to type check29, which is in-
consistent with Univalence. However, recent version includes an option
to tighten the restraints on pattern matching so that one can no-longer
prove UIP30. This allows HoTT-agda, upon which our development
depends, to postulate the Univalence Axiom.

Agda allows defining new recursive data types and functions. To
ensure consistency of these it applies positivity checks and termination
checks. However, all types used in our development are well-known from
type theory literature, and thus we believe that the proofs should be

29The principle states that for a, b : A and any α, β : IdA a b we have that
Idα β.

30Cockx, Devriese, and Piessens 2014.
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transferable to any proof-checker with a type system able to represent
the following type constructs:

• Π-types
• Σ-types
• Binary sum types
• W-types
• Id-types
• A univalent universe
• (−1)-truncation (for set theoretical axioms on V )
• Mere set quotients (for set theoretical axioms on V )

The proofs concerning the identity type of W-types uses, η-reduction
for functions (i.e. (λx.fx) ≡ f). One may speculate that the proofs
could be modified to hold even if η-reduction only holds up to iden-
tity, but most dependent type systems have some function type with
η-reduction, so we do not pursue that road here.

3 Case study

To demonstrate how the human readable proofs and the formal proofs
relate, we will have a closer look at a single theorem, and its incarnation
in both article and code. The theorem chosen is the theorem which
shows that our chosen notion of equality for multisets is equivalent to
the identity type – given the univalence axiom. This is found in Part A
as Theorem A:9. The code formalising the theorem is quoted below.

Id-is-Eq’ : (i : ULevel) (x y : M i) → (x == y) � Eq’ x y
Id-is-Eq’ i (sup A f) (sup B g) = IH ◦e EXT ◦e UA ◦e WLEM where

IH : Σ (A � B) (\α → ((x : A) → (g (apply α x)) == (f x)))
� Eq’ (sup A f) (sup B g)

IH = equiv-Σ-snd (\α → equiv-Π (ide _)
(\x → Id-is-Eq’ i (g (apply α x)) (f x)))

EXT : Σ (A � B) (\α → (g ◦ (apply α) == f))
� Σ (A � B) (\α → ((x : A) → (g (apply α x)) == (f x)))

EXT = equiv-Σ-snd (\α → app=-equiv)

lem0 : {A : Type i} → (ua (ide A)) == idp
lem0 = ua-η idp
lem = equiv-induction

(\α → transport (T i) (fst ua-equiv α) == apply α)
(\A → ap (\f → coe (ap (T i) f)) lem0)

UA : (Σ (A == B) (\α → (g ◦ (transport (T i) α) == f)))
� Σ (A � B) (\α → (g ◦ (apply α) == f))

UA = (equiv-Σ-snd (\α → coe-equiv (ap (\h → g ◦ h == f) (lem α))))
◦e (equiv-Σ-fst (\α → g ◦ (transport (T i) α) == f)(snd ua-equiv)) −1
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WLEM : ((sup A f) == (sup B g))
� Σ (A == B) (\α → (g ◦ (transport (T i) α) == f))

WLEM = W-id-� (T i)

Id�Eq : (i : ULevel) (x y : M i) → (x == y) � Eq x y
Id�Eq = \i x y → Eq’-is-Eq x y ◦e Id-is-Eq’ i x y

Starting at the bottom, the term Id�Eq is the proof of the theorem
we want. We can see the statement of the theorem on the line above.
The type Eq is the name in the formalisation of =M , and ‘==‘ is the
identity type.

While M in our paper was defined with an implicit dependency of
a universe U , the Agda formalisation defines M i having an explicit
dependency of a universe level i. That’s why the type of Id�Eq starts
with the quantification (i : ULevel).

Looking at the definition of Id�Eq one quickly sees mention of some-
thing called Eq’, which doesn’t appear in the proof of the article. This
is because in its natural formulation Eq lies one universe level below the
identity type of M, and it turned out that the cleanest way to handle
this in Agda was to define an auxiliary type with the same inductive
definition as Eq on a higher level.

Thus, the essence of the proof is in the term Id-is-Eq’, and it closely
corresponds to the informal proof, which is a chain of equivalences. In
the formalisation each step is given short name: IH, EXT, UA and WLEM.

The informal proof has an addition step helping the reader recog-
nise the definition of a homotopy between two function. Agda usually
needs no help recognising definitional equalities. However, each step in
the proof is easy enough that the reader will understand without fur-
ther explanation, Agda needs to be presented the exact terms. Each
step therefore is given a definition in the formalisation – in each case
a simple adaption of some already known term. Perhaps the only step
which seems unduly complicated is the definition of UA. This might be
due to the fact that the univalence axiom is a kind of artificial addi-
tion to Agda, which is simply postulated and doesn’t come with many
convenient definitional equalities, forcing a bit of transport yoga.

In conclusion, we see that there is as close a correspondence be-
tween the informal proof and the Agda formalisation as we could hope
for. However, they differ in which details we chose to leave to the
reader/proof-checker. The human can be trusted to see how to ap-
ply already known theorems in the relevant way, while Agda excel at
computing definitional equalities.
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4 Selected excerps from HoTT-agda

The formalisation of our results depends on the HoTT-Agda library31 –
mostly for standard definitions of Homotopy Type Theory. In stead of
quoting lengthy files of code from the library, we include here the types
of some of the terms we use in our formalisation.

PathOver : ∀ {i j} {A : Type i} (B : A → Type j)
{x y : A} (p : x == y) (u : B x) (v : B y) → Type j

syntax PathOver B p u v =
u == v [ B ↓ p ]

ap : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y : A}
→ (x == y → f x == f y)

transport : ∀ {i j} {A : Type i} (B : A → Type j) {x y : A} (p : x == y)
→ (B x → B y)

Π : ∀ {i j} (A : Type i) (P : A → Type j) → Type (lmax i j)
Σ : ∀ {i j} (A : Type i) (B : A → Type j) → Type (lmax i j)

_•_ : {x y z : A}
→ (x == y → y == z → x == z)

_•’_ : {x y z : A}
→ (x == y → y == z → x == z)

•’=• : {x y z : A} (p : x == y) (q : y == z)
→ p •’ q == p • q

•’-assoc : {x y z t : A} (p : x == y) (q : y == z) (r : z == t)
→ (p •’ q) •’ r == p •’ (q •’ r)

•-unit-r : {x y : A} (q : x == y) → q • idp == q

•’-unit-l : {x y : A} (q : x == y) → idp •’ q == q

! : {x y : A} → (x == y → y == x)

!-inv-l : {x y : A} (p : x == y) → (! p) • p == idp
!-inv-r : {x y : A} (p : x == y) → p • (! p) == idp

_•d_ : {x y z : A} {p : x == y} {p’ : y == z}
{u : B x} {v : B y} {w : B z}

→ (u == v [ B ↓ p ]
→ v == w [ B ↓ p’ ]
→ u == w [ B ↓ (p • p’) ])

31The HoTT-Agda library is c© 2013 Guillaume Brunerie, Evan Cavallo,
Favonia, Nicolai Kraus, Dan Licata, Christian Sattler
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5 Code

5.1 Propositions/Equivalences.magda

This module contains well-known lemmas about biimplication, and a
few other lemmas about propositions which might be more logical to
put somewhere else.

module Propositions.Equivalences where

open import lib.Base
open import lib.NType
open import lib.NType2
open import lib.Equivalences
open import lib.types.Sigma
open import lib.types.Pi

5.1.1 Notation

Apply equivalences (the notation in lib.Equivalences is annoying)

apply = fst

infix 4 _↔_

5.1.2 Logical equivalence
_↔_ : ∀ {i j} → Type i → Type j → Type (lmax i j)
_↔_ = \a b → (a → b) × (b → a)

For propositions, ↔ and � are equivalent:

↔-level : ∀ {i j} {n : N−2} {A : Type i} {B : Type j}
→ (has-level n A → has-level n B → has-level n (A ↔ B))

↔-level Al Bl = ×-level (→-level Bl) (→-level Al)

is-prop-if-true : ∀ {i} {A : Type i} → (A → is-prop A) → is-prop A
is-prop-if-true p = \x → p x x

prop-�-is-↔ : ∀ {i j} {A : Type i} {B : Type j}
→ is-prop A → is-prop B
→ (A � B) � (A ↔ B)

prop-�-is-↔ p q = (\α → apply α , apply (α −1)) , is-eq _ φ κ δ where
φ = \e → (fst e) , is-eq _ (snd e)

(\b → prop-has-all-paths q _ _)
(\a → prop-has-all-paths p _ _)

κ = \e → prop-has-all-paths (↔-level p q) _ _
δ = \e → prop-has-all-paths (�-level p q) _ _

Show that Σ over a contractible predicate changes nothing to the
underlying type.
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prop-equal : ∀ {i j} {A : Type i}
→ {P : A → Type j}
→ (∀ a → is-prop (P a))
→ {a a’ : A} {p : P a} {p’ : P a’}
→ (a == a’)
→ (a , p) == (a’ , p’)

prop-equal q idp = pair= idp (prop-has-all-paths (q _) _ _)

has-all-paths-over : ∀ {i j} {A : Type i}
→ (B : A → Type j) → Type (lmax j i)

has-all-paths-over {A = A} B
= {a a’ : A} (p : a == a’)
→ (b : B a) (b’ : B a’)
→ b == b’ [ B ↓ p ]

contr-has-all-paths-over : ∀ {i j} {A : Type i}
→ {B : A → Type j}
→ Π A (is-contr ◦ B) → has-all-paths-over B

contr-has-all-paths-over c idp b b’ = contr-has-all-paths (c _) b b’

Σ-contract : ∀ {i j} {A : Type i}
→ {P : A → Type j}
→ (∀ a → is-contr (P a))
→ Σ A P � A

Σ-contract c = fst , is-eq _ (\a → (a , fst (c a))) φ ψ where
φ = \a → idp
ψ = \ap → pair= idp (contr-has-all-paths-over c _ _ _)

Dependent equality in fibres of propositional predicates is contractible.
This is the dependent version of the definition of a mere proposition.

is-prop-has-contr-path-over : ∀ {i j} {A : Type i}
→ {B : A → Type j}
→ (∀ a → is-prop (B a))
→ {a a’ : A} → (p : a == a’)
→ (b : B a) (b’ : B a’)
→ is-contr (b == b’ [ B ↓ p ])

is-prop-has-contr-path-over c idp = c _

If a predicate is propositional, the first projection is an embedding.

prop-equal-� : ∀ {i j} {A : Type i}
→ {P : A → Type j}
→ (∀ a → is-prop (P a))
→ {a a’ : A} (p : P a) (p’ : P a’)
→ (a == a’) � ((a , p) == (a’ , p’))

prop-equal-� q p p’ = =Σ-eqv (_ , p ) (_ , p’)
◦e (Σ-contract

(\p → is-prop-has-contr-path-over q p _ _) −1)

Sufficient criteria to establish equivalence between two Σ-types when
the families are propositional predicates.

restricted-equiv : ∀ {i j k l} {A : Type i} {B : Type j}
→ (α : A � B)
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→ {P : A → Type k} {Q : B → Type l}
→ (∀ a → is-prop (P a))
→ (∀ b → is-prop (Q b))
→ (∀ a → P a → Q (apply α a))
→ (∀ b → Q b → P (apply (α −1) b))
→ Σ A P � Σ B Q

restricted-equiv α {P = P} {Q = Q} prop-P prop-Q ε δ
= equiv-Σ α

(\p → apply ((prop-�-is-↔ (prop-P _) (prop-Q _))−1)
(transport (\p’ → P (apply (α −1) p) → Q p’)

(<–-inv-r α p) (ε _) , δ _) )

5.2 Propositions/Existensial.magda

This module implements the truncated existensial quantifier, using the
HoTT library truncations.

module Propositions.Existensial where
open import lib.Base
open import lib.NType

open import lib.types.Truncation
open import lib.types.Sigma
open import lib.types.Pi
open import lib.types.TLevel

5.2.1 Truncated Existensial quantification
module _ {i j} (A : Type i) (B : A → Type j) where

∃ : Type (lmax i j)
∃ = Trunc (0 -1) (Σ A B)

∃-elim : ∀ {j} {P : ∃ → Type j}
→ (p : (x : ∃) → is-prop (P x)) (d : (a : Σ A B) → P [ a ])
→ Π ∃ P

∃-elim p = Trunc-elim p

∃-is-prop : is-prop ∃
∃-is-prop = Trunc-level

5.3 Propositions/Disjunction.magda

This module implements both disjoint union and truncated binary dis-
junction. We use the HoTT library truncations.

module Propositions.Disjunction where
open import lib.Base
open import lib.NType

open import lib.types.Truncation
open import lib.types.Sigma
open import lib.types.Pi
open import lib.types.TLevel
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5.3.1 Binary disjoint union
module _ {i j} where

data _+_ (A : Type i) (B : Type j) : Type (lmax i j) where
left : A → A + B
right : B → A + B

cases : ∀ {k} {A : Type i} {B : Type j}
→ {C : A + B → Type k}
→ ((a : A) → C (left a))
→ ((b : B) → C (right b))
→ (x : A + B) → C x

cases f g (left a) = f a
cases f g (right b) = g b

5.3.2 Binary truncated disjunction
_∨_ : (A : Type i) (B : Type j) → Type (lmax i j)
A ∨ B = Trunc (0 -1) (A + B)

∨-elim : ∀ {k} {A : Type i} {B : Type j} {P : A ∨ B → Type k}
→ (p : (x : A ∨ B) → is-prop (P x)) (d : (a : A + B) → P [ a ])
→ Π (A ∨ B) P

∨-elim p d = Trunc-elim p d

∨-elim’ : ∀ {k} {A : Type i} {B : Type j} {P : A ∨ B → Type k}
→ (p : (x : A ∨ B) → is-prop (P x))
→ (d : (a : A) → P [ left a ])
→ (d’ : (b : B) → P [ right b ])
→ Π (A ∨ B) P

∨-elim’ p d d’ = Trunc-elim p (cases d d’)

∨-is-prop : (A : Type i) (B : Type j) → is-prop (A ∨ B)
∨-is-prop A B = Trunc-level

5.4 W/W.magda
{-# OPTIONS --without-K #-}
module W.W where

open import lib.Base
open import lib.Equivalences

5.4.1 W-types

This module defines W-types and characterizes their identity type.

data W {i j} {A : Type i} (B : A → Type j) : Type (lmax i j) where
sup : (a : A) → (B a → W B) → W B

shape : ∀ {i j} {A : Type i} {B : A → Type j} → W B → A
shape (sup a _) = a

subtree : ∀ {i j} {A : Type i} {B : A → Type j} → (x : W B) → B (shape x) → W B
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subtree (sup _ f) = f

open W

This is the unpacked equality on W-types:
W-unpacked-id : forall {i j} {A : Type i} {B : A → Type j}

→ (x y : W B) → Type (lmax i j)
W-unpacked-id {B = B} (sup a f) (sup a’ f’)

= Σ (a == a’)
(\α → (f’ ◦ (transport B α)) == f )

Home helper functions
id-to-W-helper : forall {i j} {A : Set i} (B : A → Set j)

→ {a a’ : A} → {f : B a → W B} {f’ : B a’ → W B}
→ (sup a f) == (sup a’ f’) → W-unpacked-id (sup a f) (sup a’ f’)

id-to-W-helper B idp = (idp , idp)

id-to-W : forall {i j} {A : Set i} (B : A → Set j) → {x y : W B}
→ x == y → W-unpacked-id x y

id-to-W B {x = (sup a f)} {y = (sup a’ f’)} p = id-to-W-helper B p

W-to-id-helper : forall {i j} {A : Set i} (B : A → Set j)
→ {a a’ : A} → {f : B a → W B} {f’ : B a’ → W B}
→ W-unpacked-id (sup a f) (sup a’ f’)
→ (sup a f) == (sup a’ f’)

W-to-id-helper B (idp , idp) = idp

W-to-id : forall {i j} {A : Set i} (B : A → Set j)
→ {x y : W B}
→ W-unpacked-id x y → x == y

W-to-id B {x = sup a f} {y = sup a’ f’} α = W-to-id-helper B α

The main equivalence:
W-id-� : forall {i j} {A : Set i} (B : A → Set j) → {x y : W B}

→ (x == y) � W-unpacked-id x y
W-id-� {A = A} B {sup a f} {sup a’ f’} =

((id-to-W B) , is-eq _ (W-to-id B) (ε {f = f} {f’ = f’}) δ) where
ε : {a a’ : A} {f : B a → W B} {f’ : B a’ → W B}

→ (b : W-unpacked-id (sup a f) (sup a’ f’))
→ id-to-W B (W-to-id B {sup a f} {sup a’ f’} b) == b

ε (idp , idp) = idp

δ : {a a’ : A} {f : B a → W B} {f’ : B a’ → W B}
→ (a : (sup a f) == (sup a’ f’))
→ W-to-id B (id-to-W B a) == a

δ idp = idp

5.4.2 W-induction
W-induction : ∀ {i j k} {A : Set i} (B : A → Set j)

→ (P : W B → Set k)
→ ((x : W B) → ((i : B (shape x)) → P (subtree x i)) → P x)
→ (x : W B) → P x

W-induction B P φ (sup a f) = φ (sup a f) (\i → W-induction B P φ (f i))
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5.5 Function/Fiberwise.magda
{-# OPTIONS --without-K #-}

module Function.Fiberwise where

This module gives an equivalence between “slice functions” and fi-
brewise functions.

open import lib.Base
open import lib.Equivalences
open import lib.Equivalences2
open import lib.Funext
open import lib.types.Sigma
open import lib.types.Pi
open import lib.PathGroupoid
open import lib.NType
open import Propositions.Equivalences

5.5.1 The fibre of a function in a point
fibre : ∀ {i j} {A : Type i} {B : Type j} → (f : A → B) → B → Type (lmax i j)
fibre {A = A} f b = Σ A (\a → f a == b)

The following lemma says how fibres behave over paths:

fibre-transport : ∀ {i j} {A : Type i} {B : Type j} → (f : A → B)
→ {b b’ : B} → (h : b == b’)
→ ∀ a e → (a , e) == (a , e • h) [ fibre f ↓ h ]

fibre-transport f idp a idp = idp

5.5.2 Dependent paths
ap-idp : ∀ {i j} {A : Type i} {B : Type j}

→ (f : A → B)
→ {a a’ : A}
→ (p : a == a’)
→ ap f p == idp [ (\v → f v == f a’) ↓ p ]

ap-idp f idp = idp

The following lemma is a bit of a brute force path calculation:

ap-idp’ : ∀ {i j} {A : Type i} {B : Type j}
→ (f r : A → B)
→ (σ : ∀ a → f a == r a)
→ {a a’ : A}
→ (p : a’ == a)
→ (! (σ a’) • ap f p) •’ (σ a) == idp [ (\v → r v == r a) ↓ p ]

ap-idp’ f r σ {a = a} idp = ap (\x → x •’ σ a)
(•-unit-r (! (σ a))) • (!-inv’-l (σ a))

The following lemma explains how ap works with compositions.
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ap-comp : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
→ (f : A → B) (g : B → C)
→ {a a’ : A} (p : a == a’)
→ ap g (ap f p) == ap (\a → g (f a)) p

ap-comp f g idp = idp

ap2d : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Type k}
→ (F : ∀ a → B a → C)
→ {a a’ : A} {b : B a} {b’ : B a’}
→ (p : a == a’) (q : b == b’ [ B ↓ p ])
→ F a b == F a’ b’

ap2d F idp idp = idp

5.5.3 Algebraic lemmas

Two general lemmas from
∏
and

∑
algebra.

sum-commute : ∀ {i j k} {A : Type i} (B : A → Type j) (C : A → Type k)
→ Σ (Σ A B) (C ◦ fst) � Σ (Σ A C) (B ◦ fst)

sum-commute {A = A} B C = there , is-eq there back there-back back-there where
there : Σ (Σ A B) (C ◦ fst) → Σ (Σ A C) (B ◦ fst)
there ((a , b) , c) = ((a , c ) , b)
back : Σ (Σ A C) (B ◦ fst) → Σ (Σ A B) (C ◦ fst)
back ((a , c ) , b) = ((a , b) , c)
there-back : ∀ acb → there (back acb) == acb
there-back ((a , c) , b) = idp
back-there : ∀ abc → back (there abc) == abc
back-there ((a , b) , c) = idp

prod-commute : ∀ {i j k} {A : Type i}
→ (B : A → Type j) (C : {a : A} → B a → Type k)
→ (Σ (Π A B) (\f → Π A (C ◦ f))) � (Π A (\x → Σ (B x) C))

prod-commute {A = A} B C = there , is-eq there back there-back back-there where
there : (Σ (Π A B) (\f → Π A (C ◦ f))) → (Π A (\x → Σ (B x) C))
there (f , s) x = (f x , s x)
back : (Π A (\x → Σ (B x) C)) → (Σ (Π A B) (\f → Π A (C ◦ f)))
back F = (\x → fst (F x)) , (\x → snd (F x))
there-back : ∀ F → there (back F) == F
there-back F = idp
back-there : ∀ fs → back (there fs) == fs
back-there fs = idp

5.5.4 Fibrewise functions

Here comes the advertised equivalence:

module _ {i j k} {A : Type i} {B : Type j} {C : Type k}
(f : A → C) (g : B → C) where

Over : Type (lmax (lmax i j) k)
Over = (Σ (A → B) (\α → ∀ x → g (α x) == f x))

Fibrewise : Type (lmax (lmax i j) k)
Fibrewise = (x : C) → fibre f x → fibre g x

over-to-fibrewise : Over → Fibrewise
over-to-fibrewise (α , σ) c (a , p) = (α a , σ a •’ p)
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fibrewise-to-over : Fibrewise → Over
fibrewise-to-over F = (α , σ) where

α : A → B
α a = fst (F (f a) (a , idp))
σ : (a : A) → g (α a) == f a
σ a = snd (F (f a) (a , idp))

fibrewise : Over � Fibrewise
fibrewise = over-to-fibrewise , is-eq _ fibrewise-to-over φ ψ where

φ : ∀ F → over-to-fibrewise (fibrewise-to-over F) == F
φ F = λ= (\c → (λ= (w c))) where

w : ∀ c ap → over-to-fibrewise (fibrewise-to-over F) c ap == F c ap
w .(f a) (a , idp) = idp

ψ : ∀ ασ → fibrewise-to-over (over-to-fibrewise ασ) == ασ
ψ (α , σ) = idp

5.5.5 Fibrewise equivalences

Now we should show that [fibrewise] preserves equivalences. The proofs
here involve some ugly path computations.

module _ {i j k} {A : Type i} {B : Type j} {C : Type k}
(f : A → C) (g : B → C) where

fibrewise-equiv0 : ∀ ασ → is-equiv (apply ασ)
→ (∀ c → is-equiv (apply (fibrewise f g) ασ c))

fibrewise-equiv0 (α , σ) e c = is-eq (F c) (F’ c) (F-F’ c) (F’-F c) where
α’ = is-equiv.g e
σ’ : ∀ b → f (α’ b) == g b
σ’ b = ! (σ (α’ b)) • (ap g (is-equiv.f-g e b))
F = apply (fibrewise f g) (α , σ)
F’ = apply (fibrewise g f) (α’ , σ’)
F-F’ : ∀ c bp → F c (F’ c bp) == bp
F-F’ .(g b) (b , idp) = pair= (is-equiv.f-g e b)

( use-•’=•
•d (use-•-assoc
•d (use-!-inv-r
•d ap-idp g (is-equiv.f-g e b)))) where

use-•’=• : (σ (is-equiv.g e b)
•’ ! (σ (is-equiv.g e b))
• ap g (is-equiv.f-g e b)) ==

(σ (is-equiv.g e b)
• ! (σ (is-equiv.g e b))
• ap g (is-equiv.f-g e b))

use-•’=• = •’=• (σ (is-equiv.g e b) )
(! (σ (is-equiv.g e b)) • ap g (is-equiv.f-g e b))

use-•-assoc : σ (is-equiv.g e b)
• ! (σ (is-equiv.g e b))
• ap g (is-equiv.f-g e b) ==

(σ (is-equiv.g e b)
• ! (σ (is-equiv.g e b)))
• ap g (is-equiv.f-g e b)

use-•-assoc = ! (•-assoc (σ (is-equiv.g e b))
(! (σ (is-equiv.g e b)))
(ap g (is-equiv.f-g e b)))

use-!-inv-r : (σ (is-equiv.g e b)
• ! (σ (is-equiv.g e b)))



88 PART C: AGDA FORMALISATION

• ap g (is-equiv.f-g e b) == ap g (is-equiv.f-g e b)
use-!-inv-r = ap (\x → x • ap g (is-equiv.f-g e b))

(!-inv-r (σ (is-equiv.g e b)))
F’-F : ∀ c ap → F’ c (F c ap) == ap
F’-F .(f a) (a , idp) =

pair= (is-equiv.g-f e a)
(ap (\x → ((! (σ (is-equiv.g e (α a))) • ap g x) •’ σ a))

(! (is-equiv.adj e a))
•d (ap (\x → (((! (σ (is-equiv.g e (α a))) • x) •’ σ a)))

(ap-comp α g (is-equiv.g-f e a))
•d (ap-idp’ (\a → g (α a)) f σ (is-equiv.g-f e a))))

fibrewise-equiv1 : ∀ F → (∀ c → is-equiv (F c))
→ is-equiv (apply (fibrewise-to-over f g F))

fibrewise-equiv1 F ε = is-eq α α’ α-α’ α’-α where
F’ = \c bp → is-equiv.g (ε c) bp
α = apply (fibrewise-to-over f g F)
α’ = apply (fibrewise-to-over g f F’)
α-α’ : ∀ b → α (α’ b) == b
α-α’ b = ap2d (\c ap → fst (F c ap)) p (fibre-transport f p a idp)

• (ap fst (is-equiv.f-g (ε c) x)) where
c = g b
x = (b , idp)
a = α’ b
p : f a == c
p = (snd (F’ c x))

α’-α : ∀ a → α’ (α a) == a
α’-α a = ap2d (\c bp → fst (F’ c bp)) p (fibre-transport g p b idp)

• (ap fst (is-equiv.g-f (ε c) x)) where
c = f a
x = (a , idp)
b = α a
p : g b == c
p = (snd (F c x))

fibrewise-equiv : ∀ ασ → is-equiv (apply ασ)
↔ (∀ c → is-equiv (apply (fibrewise f g) ασ c))

fibrewise-equiv ασ
= fibrewise-equiv0 ασ ,

\ε → transport (\ασ → is-equiv (apply ασ))
(<–-inv-l (fibrewise f g) ασ)
(fibrewise-equiv1 _ ε)

Now we stitch together everything to the main result:

�-Over : Type (lmax (lmax i j) k)
�-Over = (Σ (A � B) (\α → ∀ x → g (apply α x) == f x))

�-Fibrewise : Type (lmax (lmax i j) k)
�-Fibrewise = (x : C) → fibre f x � fibre g x

Over-Fibrewise-� : �-Over � �-Fibrewise
Over-Fibrewise-� = (fibrewise-eq) ◦e (over-fibrewise) ◦e (over-equiv) where

over-equiv : �-Over � Σ (Over f g) (is-equiv ◦ apply)
over-equiv = (sum-commute _ _) −1

over-fibrewise : Σ (Over f g) (is-equiv ◦ apply)
� Σ (Fibrewise f g) (\F → (∀ c → is-equiv (F c)) )
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over-fibrewise = restricted-equiv (fibrewise f g)
(is-equiv-is-prop ◦ apply)
(Π-level ◦ (_◦_ is-equiv-is-prop))
fibrewise-equiv0 fibrewise-equiv1

fibrewise-eq : Σ (Fibrewise f g) (\F → (∀ c → is-equiv (F c)) )
� �-Fibrewise

fibrewise-eq = (prod-commute _ _)

5.5.6 Another useful lemma

This one is from the book

collect-fibres : ∀ {i j} {A : Type i} {B : Type j}
→ (f : A → B) → A � (Σ B (fibre f))

collect-fibres {A = A} f = there , is-eq _ back ω (\a → idp) where
there = \a → (f a , a , idp)
back : (Σ _ (fibre f)) → A
back p = fst (snd p)
ω : ∀ bap → there (back bap) == bap
ω (.(f a) , a , idp) = idp

5.6 Multiset/Iterative.magda
module Multiset.Iterative where

open import lib.Base
open import lib.Equivalences
open import lib.Funext
open import lib.Univalence
open import lib.types.Sigma
open import lib.types.Pi
open import lib.PathGroupoid
open import W.W
open import Function.Fiberwise
open import Propositions.Equivalences

We define an explicit decoding function for each Type i universe.

T : (i : ULevel) → Type i → Type i
T i A = A

5.6.1 The type of iterative multisets.

M : (i : ULevel) → Type (lsucc i)
M i = W (T i)

index : ∀ {i} → M i → Set i
index (sup A _) = A

element : ∀ {i} → (x : M i) → index x → M i
element (sup A f) = f
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5.6.2 The natural equality on M
Eq : ∀ {i} → M i → M i → Set i
Eq (sup A f) (sup B g) =

Σ (A � B)
(\α → ((x : A) → Eq (g (apply α x)) (f x)))

5.6.3 Membership:

x ∈ y is the set of occurences of x in y

_∈_ : ∀ {i} → M i → M i → Set i
x ∈ (sup A f) = Σ A (\i → Eq (f i) x)

_ε_ : ∀ {i} → M i → M i → Set (lsucc i)
x ε y = Σ (index y) (\i → (element y i) == x)

Eq-refl : ∀ {i} → {x : M i} → Eq x x
Eq-refl {_} {sup _ _} = ( ide _ , \x → Eq-refl)

Id-to-Eq : (i : ULevel) {x y : W (T i)} → x == y → Eq x y
Id-to-Eq i idp = Eq-refl

5.6.4 A version of Eq which lives at a higher ULevel
Eq’ : ∀ {i} → M i → M i → Set (lsucc i)
Eq’ (sup A f) (sup B g) =

Σ (A � B)
(\α → ((x : A) → Eq’ (g (apply α x)) (f x)))

Changing the ULevel doesn’t change anything:

Eq’-to-Eq : {i : ULevel} (x y : M i) → Eq’ x y → Eq x y
Eq’-to-Eq (sup A f) (sup B g) (α , σ) = (α , \a → Eq’-to-Eq _ _ (σ _))

Eq’-is-Eq : {i : ULevel} (x y : M i) → Eq’ x y � Eq x y
Eq’-is-Eq (sup A f) (sup B g)

= equiv-Σ-snd (\α → equiv-Π-r (\x → Eq’-is-Eq _ _))

5.6.5 Id is Eq

We can now prove that Id is equivalent to Eq’

Id-is-Eq’ : (i : ULevel) (x y : M i) → (x == y) � Eq’ x y
Id-is-Eq’ i (sup A f) (sup B g) = IH ◦e EXT ◦e UA ◦e WLEM where

IH : Σ (A � B) (\α → ((x : A) → (g (apply α x)) == (f x)))
� Eq’ (sup A f) (sup B g)

IH = equiv-Σ-snd (\α → equiv-Π (ide _)
(\x → Id-is-Eq’ i (g (apply α x)) (f x)))

EXT : Σ (A � B) (\α → (g ◦ (apply α) == f))
� Σ (A � B) (\α → ((x : A) → (g (apply α x)) == (f x)))

EXT = equiv-Σ-snd (\α → app=-equiv)
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lem0 : {A : Type i} → (ua (ide A)) == idp
lem0 = ua-η idp
lem = equiv-induction

(\α → transport (T i) (fst ua-equiv α) == apply α)
(\A → ap (\f → coe (ap (T i) f)) lem0)

UA : (Σ (A == B) (\α → (g ◦ (transport (T i) α) == f)))
� Σ (A � B) (\α → (g ◦ (apply α) == f))

UA = (equiv-Σ-snd (\α → coe-equiv (ap (\h → g ◦ h == f) (lem α))))
◦e (equiv-Σ-fst (\α → g ◦ (transport (T i) α) == f)(snd ua-equiv)) −1

WLEM : ((sup A f) == (sup B g))
� Σ (A == B) (\α → (g ◦ (transport (T i) α) == f))

WLEM = W-id-� (T i)

. . . and thus that Id is equivalent to Eq.
Id�Eq : (i : ULevel) (x y : M i) → (x == y) � Eq x y
Id�Eq = \i x y → Eq’-is-Eq x y ◦e Id-is-Eq’ i x y

A useful consequence is that ε and ∈ are equivalent
ε�∈ : ∀ {i} {x y : M i} → (x ε y) � (x ∈ y)
ε�∈ {y = sup A f} = equiv-Σ-snd (\i → Id�Eq _ _ _)

5.6.6 Extensional equality on multisets
ExtEq : ∀ {i} → (x y : M i) → Set (lsucc i)
ExtEq x y = ∀ z → (z ε x) � (z ε y)

Extensionality : ∀ {i} → (x y : M i) → (x == y) � ExtEq x y
Extensionality (sup A f) (sup B g)

= Over-Fibrewise-� f g ◦e φ ◦e Id�Eq _ _ _ where
φ : Eq (sup A f) (sup B g) � �-Over f g
φ = equiv-Σ-snd (\α → equiv-Π (ide _) (\x → (Id�Eq _ _ _)−1))

5.7 Sets/Iterative.magda

This module defines and proves the basic properties of iterative sets.
{-# OPTIONS --without-K #-}

module Sets.Iterative where

open import lib.Base
open import lib.Equivalences
open import lib.Funext
open import lib.Univalence
open import lib.types.Sigma
open import lib.types.Pi
open import lib.PathGroupoid
open import lib.NType
open import lib.NType2
open import W.W
open import Function.Fiberwise
open import Propositions.Equivalences

import Multiset.Iterative as M
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5.7.1 Noation
T = M.T

M = M.M

5.7.2 Definition of iterative sets

A multiset is an iterative set if elementhood is propositional and all
elements are iterative sets as well.

is-iterative-set : ∀ {i} → M i → Type (lsucc i)
is-iterative-set (sup a f)

= (i : T _ a) → (is-contr (Σ _ \(j : T _ a) → f j == f i)
× is-iterative-set (f i))

iterative-set-is-prop : ∀ {i} → (x : M i) → is-prop (is-iterative-set x)
iterative-set-is-prop (sup a f)

= Π-level (\i → ×-level is-contr-is-prop (iterative-set-is-prop (f i)))

5.7.3 The collection of iterative sets
V : ∀ i → Type (lsucc i)
V i = Σ (M i) is-iterative-set

5.7.4 Accessing the various parts of a multiset.
underlying-M : ∀ {i} → V i → M i
underlying-M = fst

index : ∀ {i} → V i → Set i
index x = M.index (underlying-M x)

element : ∀ {i} → (x : V i) → index x → V i
element (sup a f , e) i = (f i , snd (e i))

The underlying multiset of an element is the elment of the underlying
multiset:

element-underlies : ∀ {i} → (x : V i) → (i : index x)
→ M.element (underlying-M x) i == underlying-M (element x i)

element-underlies (sup a f , e) i = idp

5.7.5 Two equivalent forms of elementhood
_∈_ : ∀ {i} → V i → V i → Type i
x ∈ y = underlying-M x M.∈ underlying-M y

_ε_ : ∀ {i} → V i → V i → Type (lsucc i)
x ε y = underlying-M x M.ε underlying-M y



5. CODE 93

Given an element of the index of a set, we get an actual element.

elements-ε : ∀ {i} → (x : V i) → (i : index x) → (element x i ε x)
elements-ε (sup A f , p) i = (i , idp)

itset-element-is-itset : ∀ {i} → (x : V i) → (z : M i)
→ z M.ε (underlying-M x) → is-iterative-set z

itset-element-is-itset (sup A f , i) z (a , p)
= transport is-iterative-set p (snd (i a))

underlying-full-and-faitful : ∀ {i} → (x y : V i)
→ (underlying-M x == underlying-M y) � (x == y)

underlying-full-and-faitful (x , p) (y , p’)
= prop-equal-� iterative-set-is-prop p p’

5.7.6 Elementhood in itsets is propositional
ε-is-prop : ∀ {i} → (x : M.M i) (y : V i) → is-prop (x M.ε underlying-M y)
ε-is-prop x (sup a f , p)

= inhab-to-contr-is-prop (\e → transport (\x → is-contr (x M.ε (sup a f)))
(snd e)
(fst (p (fst e))))

5.7.7 Extensionality for sets
ExtEq : ∀ {i} → V i → V i → Type (lsucc i)
ExtEq x y = ∀ z → z ε x ↔ z ε y

ExtEqM : ∀ {i} → V i → V i → Type (lsucc i)
ExtEqM x y = ∀ z → z M.ε (underlying-M x) ↔ z M.ε (underlying-M y)

ExtEq-is-prop : ∀ {i} (x y : V i) → is-prop (ExtEq x y)
ExtEq-is-prop x y = Π-level (\z → ↔-level (ε-is-prop (underlying-M z) x)

(ε-is-prop (underlying-M z) y))

ExtEqM-is-prop : ∀ {i} (x y : V i) → is-prop (ExtEqM x y)
ExtEqM-is-prop x y = Π-level (\z → ↔-level (ε-is-prop z x)

(ε-is-prop z y))

ExtEqM�ExtEq : ∀ {i} → (x y : V i) → ExtEqM x y � ExtEq x y
ExtEqM�ExtEq x y = apply (prop-�-is-↔ (ExtEqM-is-prop x y)

(ExtEq-is-prop x y) −1)
(φ , ψ) where

φ : ExtEqM x y → ExtEq x y
φ p = p ◦ underlying-M
ψ : ExtEq x y → ExtEqM x y
ψ f z = (\q → (fst (f (z , itset-element-is-itset x z q)) q))

, (\q → snd (f (z , itset-element-is-itset y z q)) q)

Extensionality : ∀ {i} (x y : V i) → (x == y) � ExtEq x y
Extensionality x y = (ExtEqM�ExtEq x y)

◦e φ
◦e M.Extensionality _ _
◦e underlying-full-and-faitful _ _ −1 where

φ : M.ExtEq (underlying-M x) (underlying-M y) � ExtEqM x y
φ = (equiv-Π (ide _) (\z → prop-�-is-↔ (ε-is-prop z x) (ε-is-prop z y) ))
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Equality of itsets is propositional, thus the collection of all iterative
sets is a set:

==-is-prop : ∀ {i} (x y : V i) → is-prop (x == y)
==-is-prop x y = equiv-preserves-level (Extensionality x y −1)

(ExtEq-is-prop x y)

V-is-set : ∀ {i} → is-set (V i)
V-is-set = ==-is-prop

We need equality to be small, so we define a small version

_=e_ : ∀ {i} → V i → V i → Type i
x =e y = M.Eq (underlying-M x) (underlying-M y)

=e-to-== : ∀ {i} (x y : V i) → (x =e y) � (x == y)
=e-to-== x y = underlying-full-and-faitful x y ◦e (M.Id�Eq _ _ _ −1)

5.7.8 Constructing sets by small injections
_#_ : ∀ {i} {A : Type i}

→ (f : A → V i) → (∀ a a’ → (a == a’) � (f a == f a’))
→ V i

f # e = (sup _ (underlying-M ◦ f)
, \a → (equiv-preserves-level

(equiv-Σ-snd (\a’ → (underlying-full-and-faitful _ _ −1)
◦e e a’ a))

(pathto-is-contr a) , snd (f a) ))

_-_#_ : ∀ {i} {A : Type i}
→ (is-set A)
→ (f : A → V i) → (∀ a a’ → (f a == f a’) → a == a’)
→ V i

p - f # e = f # (\a a’ → apply (prop-�-is-↔ (p _ _)
(V-is-set _ _) −1)
(ap f , e a a’))

5.7.9 The index of an iterative set is a set
index-is-set : ∀ {i} → (x : V i) → is-set (index x)
index-is-set (sup a f , p)

= equiv-preserves-level (collect-fibres (element (sup a f , p)) −1

◦e (equiv-Σ-snd
(\y → equiv-Σ-snd

(\i → underlying-full-and-faitful _ _))))
(Σ-level

V-is-set
(\y → prop-is-set (ε-is-prop (underlying-M y)

(sup a f , p))))

5.7.10 Eliminating set quotients to propositions

These lemma are general, but are put here in lack of a better place.
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open import lib.types.SetQuotient

SetQuot-prop-elim : ∀ {i j k} {A : Type i} {R : A → A → Type j}
→ (P : SetQuotient R → Type k)
→ Π _ (is-prop ◦ P) → (∀ a → P q[ a ])
→ Π _ P

SetQuot-prop-elim P p q
= SetQuot-elim (prop-is-set ◦ p)

q
(\r → fst (is-prop-has-contr-path-over p _ _ _)) where

SetQuot-prop-elim2 : ∀ {i j k} {A : Type i} {R : A → A → Type j}
→ (P : SetQuotient R → SetQuotient R → Type k)
→ (∀ a b → is-prop (P a b)) → (∀ a b → P q[ a ] q[ b ])
→ (∀ a b → P a b)

SetQuot-prop-elim2 P p q = SetQuot-prop-elim
(\a → ∀ b → P a b) (\a → (Π-level (\b → p a b)))
\a → SetQuot-prop-elim (\ b → P q[ a ] b) (\b → p q[ a ] b )

\b → q a b

5.7.11 Quotient lemma

This lemma goes into constructing pairs and unions.

module _ {i} {A : Set i} (f : A → V i) where
self-equaliser : Set i
self-equaliser = SetQuotient (\a b → f a == f b)

inject : self-equaliser → V i
inject = SetQuot-rec (V-is-set {i}) f (\e → e)

inject-inj : ∀ a b → inject a == inject b → a == b
inject-inj = SetQuot-prop-elim2 (\a b → inject a == inject b → a == b)

(\a b → Π-level (\e → SetQuotient-is-set a b))
\a b → quot-rel

quotient-set : V i
quotient-set = SetQuotient-is-set - inject # inject-inj

quotient-bound : ∀ {j} {P : V i → Type j}
→ (Π _ (is-prop ◦ P))
→ ((a : A) → P (f a))
→ ∀ z → (z ε quotient-set) → P z

quotient-bound {P = P} p r z (qa , e)
= transport P (apply (underlying-full-and-faitful _ _) e)

(SetQuot-prop-elim _ (\c → p (inject c)) r qa )

5.7.12 Iterated quotients

iterated-quotient : ∀ {i} → M i → V i
iterated-quotient (sup a f) = quotient-set (\i → iterated-quotient (f i))
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5.7.13 Truncated Aczel equality

The following relation gives an alternative way of constructing V as a
quotient of M rather than as a subtype.

open import Propositions.Equivalences
open import Propositions.Disjunction
open import Propositions.Existensial
open import lib.types.Truncation

truncated-aczel-equality : ∀ {i} (x y : M i) → Type i
truncated-aczel-equality (sup a f) (sup b g)

= (∀ x → ∃ _ (\y → truncated-aczel-equality (f x) (g y)))
× (∀ y → ∃ _ (\x → truncated-aczel-equality (f x) (g y)))

_≈_ = \{i} (x y : M i) → truncated-aczel-equality x y

≈-to-== : ∀ {i} (x y : M i) → (p : is-iterative-set x) (q : is-iterative-set y)
→ x ≈ y → x == y

≈-to-== {i} (sup a f) (sup b g) p q r
= apply (((Extensionality x y) ◦e (underlying-full-and-faitful _ _)) −1)

(\z → (\{(i , α) →
∃-elim _ _ (\_ → ε-is-prop _ y)

((transport (\w → w M.ε (sup b g) ) α)
◦ (ih1 (f i) (snd (p i))))

(fst r i) }) ,
\{(j , β) → ∃-elim _ _ (\_ → ε-is-prop _ x)

((transport (\w → w M.ε (sup a f) ) β)
◦ (ih0 (g j) (snd (q j))))

(snd r j) }) where
ih1 : ∀ w → (iw : is-iterative-set w)

→ Σ b (\j → w ≈ g j) → Σ b (\j → g j == w )
ih1 w iw (j , e) = (j , ! (≈-to-== w (g j) iw (snd (q j)) e))
ih0 : ∀ w → (iw : is-iterative-set w)

→ Σ a (\i → f i ≈ w) → Σ a (\i → f i == w)
ih0 w iw (i , e) = (i , ≈-to-== (f i) w (snd (p i)) iw e)
x : V i
x = sup a f , p
y : V i
y = sup b g , q

≈-to-iterated-quotient : ∀ {i} (x : M i)
→ x ≈ (underlying-M (iterated-quotient x))

≈-to-iterated-quotient (sup a f)
= (\i → [ (q[ i ] , ≈-to-iterated-quotient (f i)) ])
, (SetQuot-prop-elim (\j → _)

(\_ → ∃-is-prop _ _)
(\j → [( j , ≈-to-iterated-quotient (f j))]))

5.8 Sets/Axioms.magda

This module proves various axioms of constructive set theory for our
model.
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{-# OPTIONS --without-K #-}

module Sets.Axioms where

open import Sets.Iterative
open import lib.Base
open import lib.Equivalences
open import lib.NType
open import lib.PathGroupoid
open import lib.Funext

open import lib.types.Span
open import lib.types.SetQuotient
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Truncation

open import Propositions.Equivalences
open import Propositions.Disjunction
open import Propositions.Existensial

open import Function.Fiberwise

import Multiset.Iterative as M

open import W.W

open W

5.8.1 Misc
data Nil (i : _) : Type i where

data One (i : _) : Type i where
∗ : One i

One-is-contr : ∀ {i} → is-contr (One i)
One-is-contr = ∗ , \{∗ → idp}

One+One-is-set : ∀ {i} → is-set (One i + One i)
One+One-is-set (left ∗) (right ∗) ()
One+One-is-set (right ∗) (left ∗) ()
One+One-is-set (left ∗) (left ∗) idp idp = idp , \{idp → idp}
One+One-is-set (right ∗) (right ∗) idp idp = idp , \{idp → idp}

� : ∀ {i j} (A : Set j) → A → One i
� A _ = ∗

Nil-elim : ∀ {i j} {A : Nil i → Type j} → Π _ A
Nil-elim ()

5.8.2 Constructions underlying the axioms
∅ : ∀ {i} → V i
∅ = (sup (Nil _) Nil-elim , Nil-elim)
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singleton : ∀ {i} → V i → V i
singleton x = (contr-is-set One-is-contr) - (\_ → x) # \{∗ ∗ p → idp}

p : ∀ {i} → V i → V i → V i
p {i} x y = quotient-set φ where

φ : One i + One i → V i
φ (left _) = x
φ (right _) = y

[z∈_‖_] : ∀{i} → V i → (Σ (V i → Type i) (\P → Π _ (is-prop ◦ P))) → V i
[z∈ (sup a f , e) ‖ ( P , p) ]

= sup (Σ _ (P ◦ element (sup a f , e))) (f ◦ fst) ,
(\x → inhab-prop-is-contr (x , idp)

(equiv-preserves-level
(sum-commute _ _)
(Σ-level

(contr-is-prop (fst (e (fst x))))
(\i → p _))) , snd (e (fst x) ) )⋃

: ∀ {i} → V i → V i⋃
{i} x = quotient-set φ where

φ : Σ (index x) (index ◦ element x) → V i
φ (i , j) = element (element x i) j

G : ∀ {i} → (x y : V i) → (index x → index y) → V i
G x y f = quotient-set (element y ◦ f) where

γ : ∀ {i} → (x y : V i) → V i
γ x y = quotient-set (G x y)

Bounded Quantification C:1. Beware! Has been known to cause
troubles.

bonded : ∀ {i j} {P : V i → Type j}
→ (x : V i)
→ ((i : index x) → P (element x i))
→ ∀ z → (z ε x) → P z

bonded {P = P} (sup A f , _) p z (i , e)
= transport P (apply (underlying-full-and-faitful _ _) e) (p i)

5.8.3 Proof of axioms
PAIR : ∀ {i} → ∀ (x : V i) y → Σ _ (\u → ∀ z → z ε u ↔ (z == x) ∨ (z == y))
PAIR x y = ( p x y , \z → (φ z , ψ z)) where

φ = quotient-bound _ (\_ → ∨-is-prop _ _)
\{(left _) → [ left idp ] ;

(right _) → [ right idp ] }
ψ : ∀ z → (z == x) ∨ (z == y) → z ε p x y
ψ z = ∨-elim’ (\_ → (ε-is-prop (underlying-M z) (p x y)))

(\p → (q[ left ∗ ] , ! (ap underlying-M p)))
(\p → (q[ right ∗ ] , ! (ap underlying-M p)))

RSEP : ∀ {i} → {P : V i → Type i} → (Π _ (is-prop ◦ P))
→ ∀ x → Σ _ \u → ∀ z → (z ε u ↔ P z × (z ε x))

RSEP {P = P} p (sup A f , e)
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= [z∈ (sup A f , e) ‖ (_ , p)] , \z → (φ z , ψ z) where
φ : ∀ z

→ z ε [z∈ (sup A f , e) ‖ (P , p)]
→ P z × (z ε (sup A f , e))

φ z ((a , e) , r)
= (transport P

(apply (underlying-full-and-faitful _ _) r)
e

, (a , r))
ψ : ∀ z

→ P z × (z ε (sup A f , e))
→ z ε [z∈ (sup A f , e) ‖ (P , p)]

ψ z (e , (a , r))
= ((a , transport P

(apply (underlying-full-and-faitful _ _) (! r))
e)

, r)

trsp2 : ∀ {i j k} {A : Type i} {B : A → Type j} (P : (a : A) → B a → Type k)
→ {a a’ : A}
→ (p : a == a’)
→ (b : B a)
→ P a b → P a’ (transport B p b)

trsp2 P idp b p = p

UNION : ∀ {i} → ∀ (x : V i)
→ Σ _ \y → ∀ z → (z ε y ↔ ∃ _ \u → (z ε u) × (u ε x))

UNION (sup A f , p) = (
⋃

(sup A f , p) , \z → ( φ z , ψ z)) where
φ = quotient-bound

_
(\qij → ∃-is-prop _ _)
\{(i , j) → [ element (sup A f , p) i

, ((j , element-underlies _ _ ) , (i , idp)) ] }
ψ : ∀ z → ∃ _ (λ u → (z ε u) × (u ε sup A f , p)) → z ε

⋃
(sup A f , p)

ψ z = ∃-elim _ _
(\x → ε-is-prop (underlying-M z) (

⋃
(sup A f , p)))

\{(u , (j , uj=z) , (i , fi=u))
→ (q[ i , transport M.index (! fi=u) j ]

, (! (element-underlies _ _))
• trsp2 (\x i → M.element x i == underlying-M z)

(! fi=u) j uj=z) }

SCOLL : ∀ {i j} → (P : V i → V i → Type j)
→ ∀ a → (∀ x → (x ε a) → Σ _ (\y → P x y))
→ Σ _ (\b → (∀ x → (x ε a) → Σ _ (\y → (y ε b) × (P x y )))

× (∀ y → (y ε b) → ∃ _ (\x → (x ε a) × (P x y ))))
SCOLL P (sup A f , p) r = (b , φ , ψ) where

a = (sup A f , p)
b = quotient-set (\i → fst (r (element a i) (i , idp)))
φ : ∀ x → (x ε a) → Σ _ (\y → (y ε b) × (P x y ))
φ x (i , p) = ( y

, (q[ i ] , idp)
, transport (\x → P x y)

(apply (underlying-full-and-faitful _ _) p)
(snd (r (element a i) (i , idp))) ) where

y = fst (r (element a i) (i , idp))
ψ : ∀ y → (y ε b) → ∃ _ (\x → (x ε a) × (P x y ))
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ψ = quotient-bound _ (\qi → ∃-is-prop _ _)
(\i → [ (element a i)

, (i , idp)
, snd (r (element a i) (i , idp))])

SUBC : ∀ {i j} → (P : V i → V i → V i → Type j)
→ ∀ {a b}
→ Σ _ (\c → ∀ u → (∀ x → (x ε a) → Σ _ (\y → (y ε b) × P u x y))

→ (Σ _ (\d → (d ε c)
× (∀ x → (x ε a)

→ ∃ _ (\y → (y ε d) × (P u x y )))
× (∀ y → (y ε d)

→ ∃ _ (\x → (x ε a) × (P u x y ))))))
SUBC P {sup A f , p} {sup B g , p’} = γ a b

, \u F → (d u F
, (di u F , idp)
, φ u F , ψ u F) where

a = (sup A f , p)
b = (sup B g , p’)
d = \u F → G a b (\i → fst (fst (snd (F (element a i) (elements-ε a i)))))
di = \u F → q[ (\i → fst (fst (snd (F (element a i) (elements-ε a i))))) ]
φ : ∀ u (F : ∀ x

→ (x ε a)
→ Σ _ (\y → (y ε b) × P u x y)) x

→ (x ε a)
→ ∃ _ (\y → (y ε d u F) × (P u x y ))

φ u F (.(f i) , e) (i , idp)
= [ (fst (F (element a i) (elements-ε a i)))

, (q[ i ]
, (snd (fst (snd (F (element a i) (elements-ε a i))))))

, transport (\x → P u x (fst (F (element a i) (elements-ε a i))))
(apply (underlying-full-and-faitful _ _) idp)
(snd (snd (F (element a i) (elements-ε a i))))]

ψ : ∀ u F y → (y ε d u F) → ∃ _ (\x → (x ε a) × (P u x y ))
ψ u F = quotient-bound

_
(\qi → ∃-is-prop _ _)
(\i → [ element a i

, (elements-ε a i)
, transport

(P u (element a i))
(! (apply

(underlying-full-and-faitful _ _)
(snd (fst (snd (F (element a i)

(elements-ε a i)))))))
(snd (snd (F (element a i) (elements-ε a i)))) ])

ε-IND : ∀ {i j} (P : V i → Type j)
→ (∀ x → (∀ y → (y ε x) → P y) → P x)
→ (∀ x → P x)

ε-IND P φ (sup A f , e)
= φ x (bonded x (\i → ε-IND P φ (f i , snd (e i)))) where

x = sup A f , e
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Type Theoretical Databases
Henrik Forssell, H̊akon Robbestad Gylterud, David I. Spivak

Abstract

We show how the display-map category of finite (sym-
metric) simplicial complexes can be seen as representing the
totality of database schemas and instances in a single mathe-
matical structure. We give a sound interpretation of a certain
dependent type theory in this model, and show how it allows
for the syntactic specification of schemas and instances and
the manipulation of the same with the usual type-theoretic
operations.

1 Introduction

Databases being, essentially, collections of (possibly interrelated) tables
of data, a foundational question is how to best represent such collections
of tables mathematically in order to study their properties and ways of
manipulating them. The relational model, essentially treating tables as
structures of first-order relational signatures, is a simple and powerful
representation. Nevertheless, areas exist in which the relational model
is less adequate than in others. One familiar example is the question of
how to represent partially filled out rows or missing information. An-
other, more fundamental perhaps, is how to relate instances of different
schemas, as opposed to the relatively well understood relations between
instances of the same schema. Adding to this, an increasing need to
improve the ability to relate and map data structured in different ways
suggests looking for alternative and supplemental ways of modelling ta-
bles, more suitable to “dynamic” settings. It seems natural, in that case,
to try to model tables of different shapes as living in a single mathemat-
ical structure, facilitating their manipulation across different schemas.

We investigate, here, a novel way of representing data structured
in systems of tables which is based on simplicial sets and type the-
ory rather than sets of relations and first-order logic32. Formally, we
present a soundness theorem (Theorem D:23) for a certain dependent
type theory with respect to a rather simple category of (finite, abstract)

32We thank an anonymous referee for pointing out that using the categorical
semantics of type theory to structure data was an explicit motivation even at
its very conception (see Cartmell 1986a,b).
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simplicial complexes. An interesting type-theoretic feature of this is that
the type theory has context constants, mirroring that our choice of “dis-
play maps” does not include all maps to the terminal object. From the
database perspective, however, the interesting aspect is that this cate-
gory can in a natural way be seen as a category of tables; collecting in
a single mathematical structure—an indexed or fibered category—the
totality of schemas and instances. It is the database perspective that
motivates, or forces, our choice of display maps.

The representation can be introduced as follows. Let a schema S be
presented as a finite set A of attributes and a set of relation variables
over those attributes. One way of allowing for partially filled out rows is
to assume that whenever the schema has a relation variable R, say over
attributes A0, . . . , An, it also has relation variables over all non-empty
subsets of {A0, . . . , An}. So a partially filled out row over R is a full row
over such a “partial” relation, or “part-relation”, of R. To this we add
the requirement that the schema does not have two relation variables
over exactly the same attributes. This requirement means that a relation
variable can be identified with the set of its attributes. Together with the
first condition, this means that the schema can be seen as a downward
closed sub-poset of the positive power set of the set of attributes A.
Thus a schema is an (abstract) simplicial complex—a combinatorial and
geometric object familiar from algebraic topology.

The key observation is now that an instance of the schema S can also
be regarded as a simplicial complex, by regarding the data as attributes
and the tuples as relation variables. Accordingly, an instance over S is a
schema of its own, and the fact that it is an instance of S is “displayed”
by a certain projection to S. Thus the category S of finite simplicial
complexes and morphisms between them form a category of schemas
which includes, at the same time, all instances of those schemas; where
the connection between schema and instance is given by a collection D
of maps in S called display maps.

We show, essentially, that S together with this collection D of maps
form a so-called display-map category33, a notion originally developed in
connection with categorical models of dependent type theory. First, this
means that the category S has a rich variety of ready-made operations
that can be applied to schemas and instances. For example, the so-called
dependent product operation can be seen as a generalization of the nat-
ural join operation. Second, it is a model of dependent type theory. We
specify a dependent type theory and a sound interpretation which inter-

33Jacobs 1999.
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prets contexts as schemas and types as instances. This interpretation is
with respect to the display-map category (S, D) in its equivalent form
as an indexed category. We introduce context constants interpreted as
distinguished single relation variable schemas (or relation schemas in the
terminology of Abiteboul, Hull, and Vianu 1995), reflecting the special
status of such schemas.

The type theory allows for the syntactic specification of both schemas
and instances. The elements of type-theoretically defined operations on
these, such as the natural join, can be formally derived in the type the-
ory. Accordingly, we see this work as being among first steps towards es-
tablishing closer links between databases and programming languages—
here in the form of dependent type theories. Towards this end, we
put some emphasis on showing that the model can be equipped with a
type-theoretic universe. An infinite instance coding all finite instances
of a schema, the universe allows reasoning generically about classes of
instances of in the type theory itself, without having to resort to the
metalanguage. Thus it provides the basis for precise, formal definitions
and analyses of further database-theoretic notions (such as query).

The representation of tables of data presented here takes the view
that tables are collections of tuples, as in the relational model. Here,
this is tightly linked (in the sense of Lemma D:13 ) with the require-
ment that a schema does not have more than one relation variable over a
given set of attributes34. An alternate view that tables are collections of
“keys”, with the possibility that two keys can represent the same data,
and that schemas can have any number of relation variables with the
same attributes, can be pursued by using (semi-)simplicial sets rather
than simplicial complexes (see Spivak 2009). We take the former view
in this paper as it gives a rather clear and simple picture of the repre-
sentation of collections of tuples “simplicially”. Also, we do not discuss
extra levels of structure, like data types (as is done in ibid.), but focus
on the representation of schemas and instances as simplicial complexes
and their type-theoretic aspects. Section 2 introduces the category of
simplicial complexes and display maps, and the representation of tables
in that setting. We strive for the presentation to be as self-contained as
possible, and assume for the most part only knowledge of the very basic
notions of category theory, such as category, functor, and natural trans-
formation. Section 2.2 contains the essential constructions and lemmas
needed for the proof of the main soundness theorem (Theorem D:23).
That theorem and the presentation of the type theory is given in Section

34We do not believe that this restriction is of major practical significance,
see Example D:46
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3. Section 4 presents the Universe, type-theoretically and semantically,
and gives some illustration of its use. Finally, Section 5 contains some
additional examples, informally presented. These examples are intended
to supplement Section 2, to give a feel for the “simplicial” representa-
tion of tables, and to indicate uses of this representation to model such
things as updates or missing data. This section can be read in parallel
with Section 2.

2 The model

2.1 Complexes, schemas, and instances

We fix the following terminology and notation, adjusting the standard
terminology somewhat for our purposes. A background on simplicial
complexes and simplicial sets can be found in e.g. Friedman 2012; Gabriel
and Zisman 1967. For symmetric simplicial sets see Grandis 2001.

A simplicial complex can be thought of as a set of vertices together
with a collection of faces, where the set of faces is a downward closed set
of finite non-empty, non-singleton subsets of vertices. More formally, we
use the following definitions.
Based poset. Let X be a poset. A subset B ⊆ X is called a basis of
X if the following hold:

1. for all x, y ∈ X, one has x ≤ y if and only if B≤x ⊆ B≤y, where
B≤x = (↓ x) ∩ B = {z ∈ B z ≤ x};

2. for all g, h ∈ B one has g ≤ h ⇒ g = h; and

3. B≤x is inhabited and of bounded finite size for all x ∈ X. That is,
there exists an n ∈ N such that for all x ∈ X, 1 ≤ |B≤x| ≤ n.

If X has a basis, one sees easily that the basis is unique, and we say that
X is a based poset.
Dimension. Let X be a based poset with basis B. Then define Xn :=
{x ∈ X |B≤x| = n+ 1} to be the set of faces of dimension n. In
particular, the set of vertices X0 = B can be considered as faces of
dimension 0.
Simplicial complex. A based poset X is called a simplicial complex if
for all x ∈ X and Y ⊆ B≤x there exists y ∈ X such that B≤y = Y .

Example D:1. For a set S, the poset P≤n
+ (S) of non-empty subsets of

S of cardinality at most n is a simplicial complex. So is any downward
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closed subposet of P≤n
+ (S) . If X is a simplicial complex it is isomorphic

to one of this (latter) form by the map x  → B≤x.

Simplicial schema. We say that a poset X is a simplicial schema
if Xop—the poset obtained by reversing the ordering—is a simplicial
complex. The elements of X0 are called attributes and the elements of
Xn+1 are called relation variables. We consider a simplicial schema as a
category and use arrows δx

y : x �� y to indicate order. Thus the arrow
δx

y exists iff y ≤ x in the simplicial complex Xop. We reserve the use of
arrows to indicate order in the schema X and ≤ to indicate the order
in the complex Xop. We use the notation B≤x also in connection with
schemas, where it means, accordingly, the set of attributes A such that
there is an arrow δx

A.
Morphisms. Suppose that X and Y are based posets with bases B and
C respectively. A poset morphism f : X �� Y is called based if for all
x ∈ X, we have f(B≤x) = C≤f(x). A morphism of simplicial complexes
is a based poset morphism. A morphism of simplicial schemas is a
morphism of posets f :X ��Y such that fop :Xop ��Y op is a morphism
of simplicial complexes. Note that a based poset morphism f :X �� Y
is completely determined by its restriction to the basis f0 :X0 �� Y0.
Display maps. A morphism f : X �� Y of simplicial schemas is
a display map if f restricts to a family of maps fn : Xn → Yn (one
could say that it ‘preserves dimension’). It is straightforward to see that
this is equivalent to the condition that for all x ∈ Xop the restriction
f �(↓x): (↓ x) → (↓ f(x)) is an isomorphism of sets (equivalently, of
simplicial complexes).

Remark D:3. With respect to the usual notion of schema, a simplicial
schema X can be thought of as given in the usual way by a finite set
of attributes X0 = {A0, . . . , An−1} and a set of relational variables X =
{R0, . . . Rm−1}, each with a specification of column names in the form of
a subset of X0, but with the restrictions 1) that no two relation variables
are over exactly the same attributes; and 2) for any nonempty subset of
the attributes of a relation variable there exists a relation variable over
(exactly) those attributes.
Large and small, the categories S and Sd. Since we aim to represent
database schemas and instances we are interested primarily in the finite
case. However, we shall need to consider the infinite case in connection
with type theoretical universes. Say that a simplicial schema or complex
is small if it is finite, and large otherwise. For simplicity of presentation,
we restrict to the finite case in the rest of this section. The restriction
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is, however, mostly inessential, the definitions and lemmas generalise
to the infinite case. Let S be the category of small simplicial schemas
and morphisms and Sd the subcategory of small schemas and display
maps. In the sequel we shall drop the word “simplicial” and simply say
“complex” and “schema”.
Simplices. The category Sd contains in particular (the opposites of)
the n-simplices Δn and the face maps. Recall that the n-simplex Δn

is the complex given by the full positive power set on [n] = {0, . . . , n}.
A face map dn

i : Δn
��Δn+1 between two simplices is the based poset

morphism defined by k  → k, if k < i and k  → k + 1 else. These satisfy
the simplicial identity dn+1

i ◦ dn
j = dn+1

j−1 ◦ dn
i if i < j. As a schema,

Δn is the schema of a single relation on n + 1 attributes named by
numbers 0, . . . , n (and all its “generated” sub-relations). A face map
dn

i : Δn
��Δn+1 is the inclusion of the relation [n+1]−{i} into [n+1].

These schemas and morphisms play a special role in Section 3 where they
are used to specify general schemas and instances. The permutations of
Δn are also in Sd; we have not assumed that attributes are ordered and
that (display) maps preserve order.

Example D:4. Let S be the schema with attributes A, B, C and re-
lation variables R : AB and Q : BC. From a “simplicial” point of
view, S is the category given below left. It can also be regarded, more
geometrically, as the “horn” below right.

R

A

δR
A

��
R

B

δR
B

		
Q

B

δQ
B

��
Q

C

δQ
C

		 A B
R

C

A

C

B

Q

For another example, the 2-simplex Δ2 can be seen as a schema on
attributes 0,1, and 2, with relation variables {0, 1, 2}, {0, 1}, {0, 2}, and
{1, 2}. The function f0 given by A  → 0, B  → 1, and C  → 2 defines
a morphism f : S �� Δ2 of schemas/complexes. f is a display map.
For an example of a display map that is not an inclusion, consider the
morphism f ′ :S ��Δ1 defined by A  → 0, B  → 1, and C  → 0

Relational instances, the categories Rel(X). Let X be a schema.
A functor F : X �� FinSet from X to the category of finite sets and
functions can be regarded as an instance of the schema X. The set
F (x) can be regarded as a set of “keys” or “row-names”; for A ∈ B≤x

the “value” k[A] of such a key k ∈ F (x) at attribute A is the ele-
ment k[A] := F (dx

A)(k) ∈ F (A). Accordingly, there is a mapping
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F (x) �� ∏
A∈B≤x

F (A) defined by mapping k to the function A  → k[A].
For arbitrary F , this mapping is not 1–1, that is, there can be distinct
keys with the same values at all attributes. We say that F is a relational
instance if this does not happen. That is to say, a relational instance
is a functor F : X �� FinSet such that for all x ∈ X the functions
{F (δx

A) A ∈ B≤x} are jointly injective. Let Rel(X) be the category of
relational instances and natural transformations between them. (Notice
that a natural transformation between relational instances is the same
thing as a homomorphism.)

Example D:6. Let S be the schema of Example D:4. Let an instance
I be given by

R A B
1 a b
2 a’ b

Q B C
1 b c
2 d e

Then I is the functor

I(R) = {1, 2}

I(A) = {a, a′}

I(δR
A)





I(R) = {1, 2}

I(B) = {b, d}

I(δR
B)

��

I(Q) = {1, 2}

I(B) = {b, d}

I(δQ
B )





I(Q) = {1, 2}

I(C) = {c, e}

I(δQ
C )

��

with I(δR
A)(1) = a, I(δR

B)(1) = b and so on.

Example D:8. Let J be the instance J : Δ2 �� FinSet given by
J({0, 1, 2}) = {〈a, b, c〉}, J({0, 1}) = {〈a, b〉 , 〈a′, b〉},
J({1, 2}) = {〈b, c〉 , 〈d, e〉}, J({0, 2}) = {〈a, c〉 , 〈a′, c〉}, J(0) = {a, a′ ,
J(1) = {b, d}, J(2) = {c, e}, and functions J(δ−

−) the expected projec-
tions. Writing this up in table form we obtain:

0 1 2
a b c

0 1
a b
a’ b

0 2
a c
a’ c

1 2
b c
d e

0
a
a’

1
b
d

2
c
e
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Strict relational instances, and strictification. Say that a rela-
tional instance is tuplified or strict if the keys are tuples and the δ’s are
(mapped to) projections . Accordingly, in a strict instance I on schema
X we have that I(x) ⊆ ∏A∈B≤x

I(A). (We reserve the product symbol∏
for the dependent product in the category Set of sets. The dependent

product in the type theory will be denoted by Π.) Thus Example D:8
is strict. It is clear that a relational instance is naturally isomorphic to
exactly one strict relational instance with the same values. We say that
the latter is the tuplification or strictification of the former.

Working with relational instances up to strictification, or restricting
to the strict ones, resolves the coherence issues so typical of categori-
cal models of type theory. To have the “strict” instances be those “on
tuple form” presents itself as a natural choice, not least because of the
connection to the relational model. Thus, formally we shall consider
ourselves to work in the category of strict relational instances. We pro-
ceed informally, however, by allowing arbitrary relational instances but
not distinguishing between relational instances that are equal up to tu-
plification.
Substitution. Let f : X �� Y be a morphism of schemas, and let
I : Y �� FinSet be a relational instance. Then it is easily seen that
the composite I ◦ f :X �� FinSet is a relational instance. We write
I[f ] := I ◦ f and say it is the substitution of I along f .

Substitution does not preserve strict instances. If f : X �� Y is
display, however, and I : Y �� FinSet is strict, then we have that
I ◦ f(x) ⊆ ∏

A′∈B≤f(x)
∼=
∏

A∈B≤x
. The strictification of I[f ] is then

just the reindexing of the tuples along the bijection f0 : B≤x
�� B≤f(x)

(for all faces x). In contrast, if f is not display then there must exist
a face, say {A, B}, such that f(A) = f(B) = f(x), and then f ◦ I(x)
need not be a set of tuples at all. (Accordingly, if we took an ordered
perspective on schemas and morphisms and defined strict instances in
terms of cartesian products, then display morphisms would be exactly
the morphisms that preserve strict instances on the nose.) We display
this for emphasis.

Lemma D:10. Let f : X �� Y be a morphism of schemas. Then f is
display if and only if substitution along f preserves instances on tuple
form (up to reindexing).

Example D:11. Consider the morphism f :S ��Δ2 of Example D:4
and the instances I and J of Example D:6. Then J [f ] is the strictifica-
tion of I, modulo the reindexing given by f0.
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The schema induced by an instance The connection between dis-
play maps, relational instances and simplicial schemas is given by the
following. Let X be a schema and F : X �� FinSet an arbitrary
functor. Recall, e.g. from Mac Lane 1998, that the category of ele-
ments

∫
X F has objects 〈x, a〉 with x ∈ X and a ∈ F (x). A morphism

δ
〈x,a〉
〈y,b〉 : 〈x, a〉 �� 〈y, b〉 is a morphism δx

y : x �� y with F (δx
y )(a) = b.

The projection p :
∫

X F �� X is defined by 〈x, a〉  → x and δ
〈x,a〉
〈y,b〉  → δx

y .
We then have

Lemma D:13. Let X be a simplicial schema and F : X �� FinSet
be a functor. Then F is a relational instance if and only if

∫
X F is a

simplicial schema and p :
∫

X F → X is a display morphism.

Proof. Let F be a relational instance. It is clear that there is at most
one morphism between any two objects in

∫
X F , and it is easy to see

that (
∫

X F )op is a based poset with base {〈A, a〉 A ∈ X0, a ∈ F (A)},
satisfying the condition for being a simplicial complex. Furthermore,
(
∫

X F )op
n = {〈x, c〉 x ∈ Xn, c ∈ F (x)} so the projection p :

∫
X F → X

is a display morphism.
Conversely, if F is not relational, then the first condition for being a

based poset is violated by any two keys with the same data.

When F is a relational instance we writeX.F for
∫

X F , and refer to it
as the canonical schema of F . We refer to p as the canonical projection.

Example D:14. The instance J of Example D:6 has the canonical
schema given by the attribute set {〈0, a〉 , 〈0, a′〉 , 〈1, b〉 , 〈1, d〉 , 〈2, e〉 , 〈2, c〉}
and relation variables e.g. 〈{0, 1, 2}, 〈a, b, c〉〉.

Terminal instances. A schema X induces a canonical instance of
itself by filling out the relations by a single row each, consisting of the
attributes of the relation. This instance is terminal in the category of
instances of X; that is, every other instance of X has a unique morphism
to it. It is of course isomorphic to the strict instance defined by A  → 1,
for A ∈ X0 and 1 = {∗} a fixed singleton set, and x  →! :B≤x

�� 1 for
x ∈ X \ X0. We take this (latter) instance to be the terminal instance
1X : X �� FinSet. For notational reasons, however, we allow ourself
below to to think of it and write it as the functor defined by x  → {x}.
Full tuples and induced sections. A full or matching tuple t of an
instance I over schema X is a natural transformation t : 1X

�� I. We
write TrmX(I) for the set of full tuples (indicating that we see them
as terms type-theoretically). A full tuple t of a strict instance can be
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considered as an element in
∏

A∈X0 I(A) satisfying the condition that
for all x ∈ X we have that t �B≤x

∈ I(x).
Given a full tuple t : 1X

�� I, the induced section is the morphism
t̂ : X ��X.I defined by x  → 〈x, tx(x)〉. Notice that the induced section
is always a display morphism.

Example D:16. The instance I of Example D:6 has precisely two
full tuples, one of which is given by R  → 1, Q  → 1, A  → a, B  → b,
and C  → c. A full tuple can be seen as a tuple over the full attribute
set of the schema with the property that for all relation variables the
projection of the tuple is a row of that relation. The two full tuples of
I are, then, 〈a, b, c〉 and 〈a′, b, c〉. The instance J of Example D:6 has
precisely one full tuple 〈a, b, c〉.

2.2 Structure of the model

We have a functor Rel(−) : Sd
op �� Cat which maps X to Rel(X) and

f : X �� Y to Rel(f) = (−)[f ] : Rel(Y ) �� Rel(X). We denote this
indexed category by R, and think of it as a “category of databases” in
which the totality of databases and schemas are collected. It is a model
of a certain dependent type theory with context constants which we give
in Section 3. We briefly outline some of the relevant structure available
in R.

Definition D:18. For f : X ��Y in Sd and J ∈ Rel(Y ) and t :1Y
�� J

in TrmY (J):

1. Define t[f ] ∈ TrmX(J [f ]) by x  → t(f(x)) ∈ J [f ](x). Note that
t[f ][g] = t[f ◦ g].

2. With pJ :Y.J ��Y the canonical projection, let vJ :1Y.J
�� J [pJ ] be

the full tuple defined by 〈y, a〉  → a. (We elsewhere leave subscripts
on v and p determined by context.)

3. Denote by f̃ : X.J [f ] �� Y.J the schema morphism defined by
〈x, a〉  → 〈f(x), a〉. Notice that since f is display, so is f̃ .

Lemma D:19. The following equations hold:

1. For X in Sd and I ∈ Rel(X) and t ∈ TrmX(I) we have p◦ t̂ = idX

and t = v[t̂].

2. For f : X �� Y in Sd and J ∈ Rel(Y ) and t ∈ TrmY (J) we have
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(a) p ◦ f̃ = f ◦ p :X.J [f ] �� Y ;
(b) f̃ ◦ t̂[f ] = t̂ ◦ f :X �� Y.J ; and
(c) vJ [f̃ ] = vJ [f ] :1X.J [f ] �� J [f ][p].

3. For f : X �� Y and g : Y �� Z in Sd and J ∈ Rel(Z) we have
g̃ ◦ f = g̃ ◦ f̃ .

4. For X ∈ Sd and I ∈ Rel(X) we have p̃ ◦ v̂ = IdX.I .

Proof. 1) v[t̂] is the full tuple of J [p][t̂] = J [p ◦ t̂] = J [idX ] defined
by x  → v(t̂(x)) = v(〈x, t(x)〉) = t(x). 2.a) we have p ◦ f̃(x, a) =
p(f(x), a) = f(x) = f ◦ p(x, a). 2.b) We have f̃ ◦ t̂[f ](x) = f̃(x, t(fx)) =
〈f(x), t(fx)〉 = t̂(fx) = t̂ ◦ f(x). 2.c) vJ [f̃ ](x, a) = vJ(fx, a) = a =
vJ [f ](x, a). 3) We have g̃(f̃(x, a)) = g̃(fx, a) = (gfx, a) = g̃ ◦ f(x, a). 4)
We have p̃ ◦ v̂(x, a) = p̃(〈x, a〉 , a) = 〈x, a〉.

Finally, we present the instance-forming operations of dependent
product, dependent sum, 0 and 1, identity, and disjoint product.
Dependent product. Let X ∈ S, I ∈ Rel(X), and J ∈ Rel(X.J). We
define the instance ΠJI : X �� FinSet as the right Kan-extension of
J along p. Explicitly, we define the following strict instance (assuming
also I and J strict).

For A in X0 define

ΠJI(A) =
∏

a∈I(A)
J(A, a)

Let x ∈ X, f ∈ ∏A∈B≤x

∏
a∈I(A) J(A, a), y ≤ x, and s ∈ I(y). Define

f̂y,s ∈
∏

{〈A,a〉 A∈B≤y ,a=s(A)}
J(A, a)

by 〈A, a〉  → f(A)(a)). For x ∈ X define

ΠIJ(x) =

⎧⎨⎩f ∈
∏

A∈B≤x

∏
a∈I(A)

J(A, a) ∀y ≤ x. ∀s ∈ I(y). f̂y,s ∈ J(y, s)

⎫⎬⎭
Next, let f ∈ TrmX(ΠIJ) be a full tuple of the dependent product.

We consider f as an element in
∏

A∈X0 ΠIJ(A) satisfying the condition
that for all x ∈ X we have that f �B≤x

∈ ΠIJ(x). Consider the element
Apf ∈ ∏〈A,a〉∈(X.I)0 J(A, a) given by 〈A, a〉  → f(A)(a). Then for any
〈y, s〉 ∈ X.I we have Apf �B≤〈y,s〉∈ J(y, s) by the definition of ΠJI(x),
so Apf ∈ TrmX.I(J).
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Finally, given t ∈ TrmX.I(J), which we will consider as an ele-
ment of

∏
〈A,a〉∈(X.I)0 J(A, a), define the element λt of

∏
A∈X0 ΠIJ(A) by

λt(A)(a) = t(A, a). Then for all x ∈ X we have that λt �B≤x
∈ ΠIJ(x)

since t is a full tuple.

Lemma D:20. Let f :X ��Y be a display morphism in S, I ∈ Rel(Y ),
J ∈ Rel(Y.I), g ∈ TrmY (ΠIJ), and t ∈ Trm(Y.I)(J).

1. Apλt = t and λApg = g.

2. (ΠIJ)[f ] = ΠI[f ]J [f̃ ].

3. (λt)[f ] = λ(t[f̃ ]).

4. Apg[f ] = Apg[f ].

Proof. Tedious but straightforward.

Example D:21. Consider the schema S and instance I of Examples
D:4 and D:6. Corresponding to the display map f : S �� Δ2, we can
present S an instance of Δ2 as (ignoring strictification for readability)
S : Δ2 �� FinSet by S(0) = {A}, S(1) = {B}, S(2) = {C}, S(01) =
{R}, S(12) = {Q}, and S(02) = S(012) = ∅. Notice that, modulo
the isomorphism between S as presented in Example D:4 and Δ2.S,
the morphism f : S �� Δ2 is the canonical projection p : Δ2.S �� Δ2.
Similarly we have I ∈ Δ2.S as (in tabular form, using subscript instead
of pairing for elements in Δ2.S, and omitting the three single-column
tables)

R01 A0 B1
a b
a’ b

Q12 B1 C2
b c
d e

Then ΠSI is, in tabular form,

0 1 2
a b c
a’ b c

0 1
a b
a’ b

0 2
a c
a’ c
a e
a’ e

1 2
b c
d e
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0
a
a’

1
b
d

2
c
e

Notice that the three-column “top” table of ΠSI is the natural join
R01 �� Q12. The type theory of the next section will syntactically derive
the rows of this table from the syntactic specification of S and I and the
rules for the dependent product.

We present the remaining instance-forming operations more briefly.
In particular, we omit the statements and (straightforward) proofs that
all defined instances and terms are stable under substitution.

0 and 1 instances. Given X ∈ S the terminal instance 1X has already
been defined. The initial instance 0X is the constant 0 functor, x  → ∅.
Note that X.0X is the empty schema.

Dependent sum. Let X ∈ S, I ∈ Rel(X), and J ∈ Rel(X.I). We
define the instance ΣIJ :X �� FinSet (up to tuplification) by
x  → {〈a, b〉 a ∈ I(x), b ∈ J(x, a)}. For δx

y in X,
ΣIJ(δx

y )(a, b) =
〈
δx

y (a), δx,a
y,δx

y (a)(b)
〉
.

Identity. Given X ∈ S and J ∈ Rel(X) the Identity instance IdJ ∈
Rel(X.J.J [p]) is defined, up to tuplification, by 〈〈x, a〉 , b〉  → 1 if a = b
and 〈〈x, a〉 , b〉  → ∅ else. The full tuple refl ∈ Trm(X.J)(IdJ [v̂]) is defined
by 〈x, a〉  → ∗.

Disjoint union. Given X ∈ S and I, J ∈ Rel(X), the instance
I + J ∈ Rel(X) is defined by
x  → {〈n, a〉 Either n = 0 ∧ a ∈ I(x) or n = 1 ∧ a ∈ J(x)}. We have
full tuples left ∈ TrmX.I((I+J)[p]) defined by 〈x, a〉  → 〈0, a〉 and right ∈
TrmX.J((I + J)[p]) defined by 〈x, a〉  → 〈1, a〉.

3 The type theory

We introduce a Martin-Löf style type theory35, with explicit substitu-
tions (in the style of Dybjer 1996), extended with context and substi-
tution constants representing simplices and face maps. The type the-
ory contains familiar constructs such as Σ- and Π-types. It contains a
universe which is closed under the other constructions, which we will
describe in more detail in the next section. For this type theory we

35Martin-Löf 1984.
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give an interpretation in the indexed category R of the previous section.
The goal is to use the type theory as a formal language for databases.
We give examples how to specify instances and schemas formally in the
theory, and remark on how to use the universe to talk about queries.

3.1 The type theory T
The type system has the following eight judgements, with intended in-
terpretations.

Judgement Interpretation
− : Context �−� is a schema
− : Type(Γ) �−� is an instance of the schema Γ
− : Elem(A) �−� is an full tuple in the instance A
− : Γ �� Λ �−� is a (display) schema morphism
Γ ≡ Λ �Γ� and �Λ� are equal schemas
A ≡ B : Type(Γ) �A� and �B� are equal instances of �Γ�
t ≡ u : Elem(A) �t� and �u� are equal full tuples in �A�
σ ≡ τ : Γ �� Λ the morphisms �σ� and �τ� are equal

The type theory T has the rules listed in figure 2. The interpretation
of these are given by the constructions in the previous section, and
summarised in figure 3.

Each rule introduces a context, substitution, type or element. We
will apply usual abbreviations such as A �� B for ΠAB[↓A] and A × B
for ΣAB[↓A]. In addition to these term introducing rules there are a
number of equalities which should hold; such as the simplicial identities
dn+1

i ◦ dn
j ≡ dn+1

j−1 ◦ dn
i : Δn

��Δn+2. We list the definitional equalities
in 4.

These all hold in our model. (The equalities for substitution are
verified in Lemma D:19. The remaining equations are mostly routine
verifications.) We display this for reference.

Theorem D:23. The intended interpretation �−� yields a sound inter-
pretation of the type theory T in R.

3.2 Instance specification as type introduction

The intended interpretation of Γ ! A type is that A is an instance of
the schema Γ. But context extension allows us to view every instance
as a schema in its own right; for every instance Γ ! A type, we get
a schema Γ.A. It turns out that the most convenient way to specify a
schema is by introducing a new type/instance over one of the simplex
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schemas Δn. To specify a schema, with a maximum of n attributes, may
be seen as introducing a type in the context Δn. A relation variable with
k attributes in the schema is introduced as an element of the schema
substituted into Δk. Names of attributes are given as elements of the
schema substituted down to Δ0.

Example D:24. We construct the rules of the schema S presented as
an instance of Δ2 as in Example D:21. The introduction rules tells us
the names of tables and attributes in S.

S : Type(Δ2) A ≡ R[d1] : Elem(S[d2 ◦ d1])
A : Elem(S[d2 ◦ d1]) B ≡ R[d0] : Elem(S[d2 ◦ d0])
B : Elem(S[d2 ◦ d0]) B ≡ Q[d1] : Elem(S[d0 ◦ d1])
C : Elem(S[d0 ◦ d0]) C ≡ Q[d0] : Elem(S[d2 ◦ d0])
R : Elem(S[d2])
Q : Elem(S[d0])

From these introduction rules, we can generate an elimination rule.
The elimination rule tells us how to construct full tuples in an instance
over the schema S. Another interpretation of the elimination rule is that
it formulates that the schema S contains only what is specified by the
above introduction rules; it specifies the schema up to isomorphism.

I : Type(Δ2.S), a : Elem(Δ0, I[(d2 ◦ d1).S][A↑]),
b : Elem(Δ0, I[(d2 ◦ d0).S][B↑]), c : Elem(Δ0, I[(d0 ◦ d0).S][C↑]),
r : Elem(Δ1, I[d2.S][R↑]), q : Elem(Δ1, I[d0.S][Q↑]),
r[d1] ≡ a, r[d0] ≡ b, q[d1] ≡ b, q[d0] ≡ c

! recS a b c r q : Elem(Δ2.S, I)

An instance of a schema is a type depending in the context of the
schema. Therefore instance specification is analogous to schema specifi-
cation.

Example D:26. Let S be the schema from the previous example. The
following set of introductions presents an instance I of S.
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Δ2.S ! I type
! a : Elem(Δ0, I[(d2 ◦ d1).S][A↑]) ! r0[d1] ≡ a
! a′ : Elem(Δ0, I[(d2 ◦ d1).S][A↑]) ! r0[d0] ≡ b
! b : Elem(Δ0, I[(d2 ◦ d0).S][B↑]) ! r1[d1] ≡ a′

! d : Elem(Δ0, I[(d2 ◦ d0).S][B↑]) ! r1[d0] ≡ b
! c : Elem(Δ0, I[(d0 ◦ d0).S][C↑]) ! q0[d1] ≡ b
! e : Elem(Δ0, I[(d0 ◦ d0).S][C↑]) ! q0[d0] ≡ c
! r0 : Elem(Δ1, I[(d2).S][R↑]) ! q1[d1] ≡ d
! r1 : Elem(Δ1, I[(d2).S][R↑]) ! q1[d0] ≡ e
! q0 : Elem(Δ1, I[(d0).S][Q↑])
! q1 : Elem(Δ1, I[(d0).S][Q↑])

The above is clearly very verbose, and can be compressed, at the cost
of loosing control over the naming of attributes, into the following.

! I : Type(Δ2.S)
! r0 : Elem(Δ1, I[(d2).S][R↑]) ! r0[d0] ≡ r1[d0]
! r1 : Elem(Δ1, I[(d2).S][R↑]) ! q0[d1] ≡ r0[d0]
! q0 : Elem(Δ1, I[(d0).S][Q↑])
! q1 : Elem(Δ1, I[(d0).S][Q↑])

We omit the elimination rule.

4 Universe

We construct the universe of finite instances of a schema. This is a large
instance (in the sense of the small/large distinction of Section 2). Thus
we allow in this section that schemas and instances can be large, that
is, have infinitely many attributes, tables and rows.

4.1 Constructing the universe

An essential part of type theory is the notion of a universe of types. A
universe of types is a family of types which is closed under some set of
type constructors. This allows powerful reasoning about types in type
theory itself. In this section we will, for each schema X, construct a
universe of finite instances of X.

More precisely, A universe in type theory, in a context Γ, consists of
a type U : type(Γ) and a family T : type(Γ.U). We think of the type
U as the type of codes for types in the universe, and the family T as
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decoding the codes into actual types (by substitution).

X FinSet
TX [̂t]

��

X.UX

X

p

��

X.UX

FinSet

TX


X FinSet��

X.UX

X

��

t̂

X.UX

FinSet


An important feature of a type theoretic universe is its closure under
typeforming operations such as Π- and Σ-types. This is what allows
reasoning about types internally in the type theory.

In order to encode the collection of finite instances into an instance
of its own, we need a small set of tuples to work with. Let us therefore
fix a set of values V closed under making lists, in the sense that V i ⊆ V
for every finite subset i ⊆ V . This allows us to iterate tuple forming
constructions such as Π and Σ.

Definition D:28. Define Dn(V ) to be the set of strict instances of the
schema Δn which have values in V .

Definition D:29. Given a schema X, we define UX : X → Type by

UX(A) = {〈n, k, I〉 | n ∈ N ∧ k ∈ [n] ∧ I ∈ Dn(V )}
for attributes A

UX(x) = {t :
∏

A∈B≤x

UX(A) | π1 ◦ t injective ∧ π0 ◦ t and π2 ◦ t constant}

for faces x

In order to define the decoding instance of the universe, which takes
a code to its instance, we need easy access to the instances on attribute
level.

Definition D:30. Given a schema X, a face x in X and a element t ∈
UX(x) we denote by d(x, t) : N the unique number such that π0(t(A)) =
d(x, t) for all attributes A of x. Let I(x, t) be the uniquely defined
instance such that π2(t(A)) = I(x, t) for all attributes A of x. We denote
by α(x, t) : � x → Δd(x,t) the morphism defined by α(x, t)(A) = π1(tA)
on attributes.

Lemma D:31. Given σ : X → Y then for all x ∈ X and t ∈ UX(x) we
have that

1. d(σ(x), t ◦ σ) = d(x, t)
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2. I(σ(x), t ◦ σ) = I(x, t)

3. α(σ(x), t ◦ σ) = α(x, t) ◦ σ

Proof. 1. and 2. follows since UX(A) = UX(σ(A)) for all attributes.
3. is evident since α(σ(x), t ◦ σ)(A) = π1((t ◦ σ)A) = π1(t(σ(A)) =
α(x, t)(σ(A)), by definition for all A

Definition D:32. Given a schema X define TX : X.UX → Type by,

TX(x, t) = I(x, t) ◦ α(x, t)

Proposition D:33. The constructions U− and T− are invariant under
substitution.

Proof. U− is invariant by construction; it is a strict instance which is
constant on attributes.

T− is invariant by the calculation, given σ : X → Y

TY (σ(x), t ◦ σ) = I(σ(x), t ◦ σ) ◦ α(σ(x), t ◦ σ)
= I(x, t) ◦ α(x, t) ◦ σ

= TX(x, t) ◦ σ

Proposition D:34. Given a schema X, a full tuple a : 1 ⇒ UX and
a full tuple b : 1 ⇒ UX.TX [â] there is a full tuple σ : 1 ⇒ UX such that
TX [σ̂] = ΣTX [â](TX.TX [â][b̂])

Proof. Let Q = ΣTX [â](TX.TX [â][b̂])
For any face x of X, define an instance Sx : Δd(x,ax(∗)) → Type

Sx(k) =

⎧⎪⎪⎨⎪⎪⎩
Q(x′) where x′ is such that

∃x′′ x ≤ x′′ ∧ x′ ≤ x′′ ∧ α(x′, ax′(∗))(x′) = k

∅ if no such x′ exists

Let σx(∗)(A) = 〈d(x, ax(∗)), α(x, ax(∗))(A), Sx〉. This defines a term
in UX , since ΣTX [â](TX[â][b̂]) has values in V , and the definition of Sx is
constant upwards and downwards in X.

Furthermore: TX [σ̂] = ΣTX [â](TX[â][b̂]), by construction.
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Proposition D:35. Given a schema X, a full tuple a : 1 ⇒ UX and
a full tuple b : 1 ⇒ UX.TX [â] there is a full tuple π : 1 ⇒ UX such that
TX [π̂] = ΠTX [â](TX.TX [â][b̂])

Proof. Let Q = ΠTX [â](TX.TX [â][b̂])
For any face x of X, define an instance Sx : Δd(x,ax(∗)) → Type

Sx(k) =

⎧⎪⎪⎨⎪⎪⎩
Q(x′) where x′ is such that

∃x′′ x ≤ x′′ ∧ x′ ≤ x′′ ∧ α(x′, ax′(∗))(x′) = k

∅ if no such x′ exists

Let πx(∗)(A) = 〈d(x, ax(∗)), α(x, ax(∗))(A), Sx〉. This defines a term
in UX , since ΠTX [â](TX[â][b̂]) has values in V , and the definition of Sx is
constant upwards and downwards in X.

Furthermore: TX [π̂] = ΠTX [â](TX[â][b̂]), by construction.

4.2 Using the universe in the type theory

The rules for the universe in the type theory it self can be summarized
as

Γ : Context ! U : Type(Γ)
Γ : Context ! T : Type(Γ.U),

along with rules for invariance under substitution, and closure rules for
each type-formation rule we previously had. For instance, the closure
rule for Π is the following:

Γ : Context ! πΓ : Elem(U [↓U ][↓T �� U ])
a : Elem(U),
f : Elem(T [a↑] �� U) ! π[a↑.(T �� U)][f↑] ≡ ΠT [a↑]T [applyf ↑] : Type(Γ)

The universe, UΓ : Type(Γ) along with TΓ : Type(Γ.UΓ), allows rea-
soning generically about classes of instances of Γ in the type theory
itself, without having to resort to the metalanguage. Since schemas can
be though of as instances, they too can be constructed using the universe.
In particular, given a schema Γ, the type ΩΓ := ΣUΓΠTΓΠTΓ[↓TΓ ]IdTΓ is
the large type of subschemas of Γ. Its elements are decoded to instances
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by the family OΓ := T [↓Ω .U ][π0↑]. Given t : Elem(ΩΓ), the subschema
it encodes is Γ.O[t↑].

A query can then be seen as an operation which takes an instance
of a schema to another instance of a related schema. Given codes for a
source subschema t : Elem(Ω) and a target subschema u : Elem(Ω), the
type of queries from t to u is thus (O[t↑] �� U) �� (O[u↑] �� U). Having
given a concrete type of queries leads the way to investigations as to
exactly which queries can be expressed in the language. For illustration,
we present an example query formulated in this way.

Example D:36. In the spririt of example D:21, let a : Elem(Ω) be the
code for a subschema covering the schema Γ, in the sense that the set
of attributes are the same. The query taking the dependent product, or
natural join, of an instance of this subschema is expressed by the term

q = λλ(π[(↓Ω .U) ◦ (π0↑)][a↑.(T �� U)][↓1]) : Elem((O[a↑] �� U) �� (1Γ �� U)).

5 Representing data simplicially

We collect in this section some further examples of tables of data orga-
nized “simplicially”, and discuss briefly certain aspects of this represen-
tation. The sparse examples of Section 2 were meant to illustrate the
technical definitions, and were kept rather to a minimum. To begin with,
the following examples give some further illustrations of context exten-
sion and Σ and Π-types. (We exploit in these examples, to simplify
them a bit, the rather immediate back-and-forth translation between
“simplicial” schemas/instances and the traditional schemas/instances of
the relational model. We omit part-relation tables when they can be
assumed to be projections, for instance. We also make some cosmetic
simplifications such as not necessarily writing the attributes of induced
schemas as pairs.)

Example D:38. Let S be the schema and I the instance as follows:

State Head of state
Monarchy King
Monarchy Queen
Republic President

We write S ! I for “S is a schema and I is an instance over S”. Then
the schema S.I induced by I (p. 113) is:
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Monarchy King Monarchy Queen Republic President

Now let S.I ! J be defined as follows:
Monarchy Queen
United Kingdom Elizabeth II
Denmark Margrethe II

Monarchy King
Norway Harald V
Sweden Carl XVI Gustav

Republic President
Finland Sauli Niinistö
Iceland Ólafur Ragnar Gŕımsson

The dependent sum S ! ΣIJ (p. 117) is then the instance collecting all
the tables into the table of the original schema S:

State Head of state
〈 Monarchy, Norway 〉 〈 King, Harald V 〉
〈 Monarchy, Sweden 〉 〈 King, Carl XVI Gustav 〉
〈 Monarchy, United Kingdom 〉 〈 Queen, Elizabeth II 〉
〈 Monarchy, Denmark 〉 〈 Queen, Margretha II 〉
〈 Republic, Finland 〉 〈 President, Sauli Niinistö 〉
〈 Republic, Iceland 〉 〈 President, Ólafur Ragnar

Gŕımsson 〉

Example D:40. Let R ! K be the schema and instance

Vehicle Type Wheels

Vehicle Type
Vehicle Type

Vehicle Wheels Type Wheels
Type Wheels

K is a “subsingleton” or “subterminal” instance. It has not more than
one row in every table, and is thereby a subinstance of the terminal in-
stance 1R wich has excactly one row in each table (p. 113). Accordingly,
K can be regarded as a subschema of R.

We form the induced schema R.K. Let R.K ! L be the following
instance:
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Vehicle Type
Ford Model T Car
Triumph Tiger 100 Motorcycle
Peugeot Type 3 Car

Type Wheels
Car 4
Motorcycle 2

The dependent product R ! ΠAB (p. 115) can in this case be computed
by instantiating the tables given by R in ascending order by taking the
natural join of the tables in L lying (not necessarily properly) below it;
thus the attribute level tables are those of L

Vehicle
Ford Model T
Triumph Tiger 100
Peugeot Type 3

Type
Car
Motorcycle

Wheels
2
4

Similarly, the [Vehicle | Type] and [Type | Wheels] tables are those
of L. While the [Vehicle | Wheels] table, for which L provides no infor-
mation, is the natural join of [Vehicle] and [Wheels]

Vehicle Wheels
Ford Model T 4
Ford Model T 2
Triumph Tiger 100 4
Triumph Tiger 100 2
Peugeot Type 3 4
Peugeot Type 3 2

Finally, [Vehicle | Type |Wheels] is the natural join of [Vehicle | Type],
[Type | Wheels], and [Vehicle | Wheels] as just given, thus:

Vehicle Type Wheels
Ford Model T Car 4
Triumph Tiger 100 Motorcycle 2
Peugeot Type 3 Car 4

Example D:42. To give an example of the dependent product where
the “middle” instance is not a subschema, we can compute S ! ΠIJ for
S.I ! J of Example D:38. Unfortunately, J has no full tuples; no choice
of values for the attributes Monarchy-Republic-King-Queen-President
yields a full tuple, as there are no monarchies in J with both a queen
and a king head of state. Thus S ! ΠIJ becomes:
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State Head of state

State

〈 Denmark, Finland 〉
〈 Denmark, Iceland 〉
〈 Norway, Finland 〉
〈 Norway, Iceland 〉
〈 Sweden, Finland 〉
〈 Sweden, Iceland 〉
〈 United Kingdom, Finland 〉
〈 United Kingdom, Iceland〉

Head of state
〈Elizabeth, Harald ,Niinistö〉
〈Elizabeth, Harald ,Gŕımsson〉
〈Elizabeth, Carl Gustav ,Niinistö〉
〈Elizabeth, Carl Gustav ,Gŕımsson〉
〈Margrethe, Harald,Niinistö〉
〈Margrethe, Harald ,Gŕımsson〉
〈Margrethe, Carl Gustav ,Niinistö〉
〈Margrethe, Carl Gustav ,Gŕımsson〉

But if we let J be, instead

Monarchy Queen
Swaziland Ndlovukati
United Kingdom Elizabeth II
Denmark Margrethe II

Monarchy King
Swaziland Ngwenyama
Norway Harald V
Sweden Carl XVI Gustav

Republic President
Finland Sauli Niinistö
Iceland Ólafur Ragnar Gŕımsson

Then the State–Head of state table of ΠIJ becomes
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State Head of state
〈 Swaziland, Finland 〉 〈Ndlovukati,Ngwenyama ,Niinistö〉
〈 Swaziland, Iceland 〉 〈Ndlovukati,Ngwenyama,Gŕımsson〉

representing the two full tuples of J .

We proceed with an example suggesting the use of context exten-
sion—the built in possibility to enter data related to the instance into
tables formed by its rows+,— for updates; an update I ′ of an instance
I over S is the instance over S.I obtained by writing the new (or old or
empty) row in the table formed by the row to be replaced (or kept or
deleted). Adding new rows can be done by writing I ′ over S.I+1 instead,
as I+1 has a copy of S over which new additions can be entered. (Mul-
tiple copies of S, and indeed of I, can be added if need be; notice that
polynomial expressions over I such as 2I +3 yield meaningful instances
over S). In this way a current update occurs in a context formed by a
string of previous updates, thus displaying provenance. Applying the de-
pendent product operation gives an instance over the original schema S,
if desired. (In the following example we return to writing the attributes
of induced schemas as attribute-value pairs. For esthestic reasons we
write pairs as A:a, and we airbrush away the pairs with 0 and 1 used for
the elements of the disjoint union.)

Example D:44. Let P ! M be the schema and instance:

First name(s) Last name SSN Department
Jim T. Kirk 333 Astrophysics
James Moriarty 222 Criminology

P ! M + 1 (p. 117) adds a dummy row:

First name(s) Last name SSN Department
Jim T. Kirk 333 Astrophysics
James Moriarty 222 Criminology

� � � �

An update which corrects Kirk’s first name, deletes Moriarty, and in-
serts two new rows can be written as an instance P.(M + 1) ! N (We
abbreviate some of the strings involved):

FN: Jim T. LN: Kirk SSN: 333 Dep: Astro
James Tiberius Kirk 333 Astrophysics
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FN: James LN: Moriarty SSN: 222 Dep: Crime

FN: � LN: � SSN: � Dep: �

Sherlock Holmes 111 Criminology
James Watson 555 Medicin

The dependent sum P ! ΣM+1N , collecting this over the original schema,
becomes:

First name(s) Last name SSN Department
Jim T. : James Tiberius Kirk : Kirk 333 : 333 Astro : Astro

� : Sherlock � : Holmes � : 111 � : Crime
� : James � : Watson � : 555 � : Med

The one condition on simplicial schemas that can hinder a straight-
forward translation from a relational schema is the condition that there
can be at most one relation variable over a given set of attributes. In
cases where there is a conflict and it is unnatural to rename attributes,
this will have to be worked around, for instance by adding extra at-
tributes to keep tables distinct.

Example D:46. Faculty and staff tables, both with intended attributes
First name, Last name, SSN, and Department. Separated with table
name attribute with dummy value:

Staff First name(s) Last name SSN Department
� Jim T. Kirk 333 Astrophysics
� James Moriarty 222 Criminology

Faculty First name(s) Last name SSN Department
� Khan N. Sing 666 Astrophysics
� Sherlock Holmes 111 Criminology

Separated with primary key columns:

Staff Id First name(s) Last name SSN Department
1 Jim T. Kirk 333 Astrophysics
2 James Moriarty 222 Criminology
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Faculty Id First name(s) Last name SSN Department
1 Khan N. Sing 666 Astrophysics
2 Sherlock Holmes 111 Criminology

In one table:

Staff/Faculty First name(s) Last name SSN Department
Staff Jim T. Kirk 333 Astrophysics
Staff James Moriarty 222 Criminology
Faculty Khan N. Sing 666 Astrophysics
Faculty Sherlock Holmes 111 Criminology

Finally, we illustrate the suggestion of using part tables to record
missing information.

Example D:48. Holmes and Watson have unknown Social Security
Numbers. Watson has not been assigned a department.

First name(s) Last name SSN Dep
Jim T. Kirk 333 Astroph

First name(s) Last name Dep
Jim T. Kirk Astroph
Sherlock Holmes Crimin
First name(s) Last name
Jim T. Kirk
Sherlock Holmes
James Watson

all other part tables are projections.
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Figure 2: Rules of the type theory

σ : Γ ��Δ, τ : Δ ��Θ ! τ ◦ σ : Γ ��Θ
Γ : Context ! idΓ : Γ �� Γ
A : Type(Γ), σ : Δ �� Γ ! A[σ] : Type(Γ)
a : Elem(A), σ : Δ �� Γ ! a[σ] : Elem(A[σ])
A : Type(Γ) ! Γ.A : Context
A : Type(Γ) ! ↓A : Γ.A �� Γ
A : Type(Γ) ! v : Elem(A[↓A])
a : Elem(A) ! a↑ : Γ �� Γ.A

A : Type(Γ), σ : Δ �� Γ ! σ.A : Δ.A[σ] �� Γ.A

A : Type(Γ), B : Type(Γ.A) ! ΠAB : Type(Γ)
b : Elem(B) ! λb : Elem(ΠAB)
f : Elem(ΠAB) ! applyf : Elem(B)
A : Type(Γ), B : Type(Γ.A) ! ΣAB : Type(Γ)
A : Type(Γ), B : Type(Γ.A) ! pair : Elem(ΣAB[↓A][↓B ])
C : Type(Γ.ΣAB),
c0 : Elem(C[(↓A ◦ ↓B).ΣAB][pair ↑] ! recΣ c0 : Elem(C)
A : Type(Γ) ! IdA : Type(Γ.A.A[↓A])
A : Type(Γ) ! refl : Elem(IdA[v↑])
C : Type(Γ.A.A[↓A].IdA),
c0 : Elem(C[(v↑).IdA][refl ↑]) ! recId c0 : Elem(C)
A : Type(Γ)B : Type(Γ) ! A+B : Type(Γ)
A : Type(Γ)B : Type(Γ) ! lA,B : Elem((A+B)[↓A])
A : Type(Γ)B : Type(Γ) ! rA,B : Elem((A+B)[↓B ])
C : Type(Γ.(A+B)),
c0 : Elem(C[(↓).(A+B)][lA,B ])
c1 : Elem(C[(↓).(A+B)][rA,B ]) ! rec+ c0 c1 : Type(C)
Γ : Context ! 0 : Type(Γ)
A : Type(Γ.0) ! rec0 : Elem(A)
Γ : Context ! 1 : Type(Γ)
Γ : Context ! ∗ : Elem(1)
A : Type(Γ.1), a : A[∗↑] ! rec1 a : Elem(A)

! Δn : Context
! dn

i : Δn
��Δn+1

where n, i, j ∈ N are such that i < j ≤ n+ 2.
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Figure 3: Interpretation of the type theory

�σ ◦ τ� = �σ� ◦ �τ� �A[σ]� = �A� [�σ�] �idΓ� = id�Γ� �a[σ]� = �a� [�σ�]

�Γ.A� = �Γ�. �A� �↓A� = p �v� = v �a↑� = �̂a�

�σ.A� = �̃σ� �ΠAB� = Π�A� �B� �λf� = λ �f� �apply� = Ap

�ΣAB� = Σ�A� �B� �pair� = pair �recΣ� = recΣ �IdA� = Id�A�

�refl� = refl �recId� = recId �Δn� = Δn �dn
i � = dn

i

Figure 4: Definitional equalities in the type theory

(υ ◦ τ) ◦ σ ≡ υ ◦ (τ ◦ σ) idΓ ◦ σ ≡ σ σ ◦ idΓ ≡ σ

a[σ ◦ τ ] ≡ a[σ][τ ] a[idΓ] ≡ a ↓A ◦(a↑) ≡ idΓ

v[a↑] ≡ a ↓A ◦ (σ.A) ≡ σ ◦ ↓A[σ] v[f.A] ≡ v

(σ.A) ◦ (a[σ]↑) ≡ a↑ ◦ σ (σ.A) ◦ (τ.A[σ]) ≡ (σ ◦ τ).A ↓ .A ◦ v↑ ≡ IdΓ.A

ΠAB[σ] ≡ ΠA[Σ]B[σ.A] apply(λb) ≡ b
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Dependent Term Systems

Abstract

We consider two approaches to unravelling the depen-
dency structures between terms in dependent type theory.
The first approach defines a notion closely related to Cart-
mell’s categories with attributes, but with a separate oper-
ations for extending a context with a defined term. The
second approach is closely related to Makkai’s one-way cate-
gories — which form the signatures of his First-Order Logic
with Dependent Sorts (FOLDS). This preliminary investiga-
tion provides the definitions and some basic results for both
approaches. We also formulate a few conjectures about how
these two approaches relate to guide further investigation.

1 Introduction

Dependently typed theories, such as Martin-Löf’s Intentional Type The-
ory (ITT), are powerful tools in logic and computer science. Their power
lies in their expressivity and in their varied semantics. A recent surge
of interest in the topic comes from a string of results relating ITT to
homotopy theory. One side of this relation is the construction of models
of ITT based on various notions of spaces in homotopy theory, such as
cubical sets. Related to this is the formulation of new type theories,
with new forms of judgements inspired by these models - in particular
Cubical Type Theory (CTT).

For their popularity, it is not easy to pin down exactly what consti-
tutes a dependently typed theory, or in general what a model of such a
thing is. This is the end goal of several current research projects.

When it comes to modelling ITT, there are many variants of the
basic theory — many of which are equivalent. We here mention

• Categories with Attributes (CwAs)
• Categories with Families (CwFs)
• Comprehension categories (CompCats)

These are all variations of setting up a framework of contexts, sub-
stitutions and types. However, these notions need to be extended for
each rule of the type theory. Thus one speaks of CwAs with Π-structure,
Σ-structure, etc.
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A different flavour of dependent types are modelled by Makkai’s
one-way categories, which are the categorical equivalent of well-founded
posets. One-way categories provide a simple model of dependent sorts,
but say nothing of terms of these sorts. In his development of First Order
Logic With Dependent Sorts (FOLDS), which uses one-way categories as
their signatures, Makkai 1995 works around the lack of terms by coding
them using relations in fruitful ways. Belo 2008 and Palmgren 2016
have each developed a syntactic notion of dependently sorted system
with terms.

In this work, we set out to find a semantic notion of term-signatures
for one-way categories. We see this as a further step towards reconciling
the two notions of dependencies, the one represented by CwAs and the
other represented by one-way categories.

2 Notation

In our mathematical descriptions, we will use the follow notations.

• Set refers to the collection of sets.
• x : A will denote x is a member of the collection or set A.
• ∑(C,F) denotes the (covariant) Grothendieck construction ap-
plied to C : Cat and F : C → Set.

• f x denotes the value of the function f applied to x.
• f(A) denotes the image of A by f, as a subset of the codomain of

f, whenever A is a subset of the domain of f.
• A - x denotes the subset of A of elements not equal to x.
• x ∈ A will denote that x is a member of the subset A. Which set

A is a subset of is left implicit.
• A ⊆ B means either

– A is a subset of B,
– or that each element of the subset A is also an element of the
subsets B. Again the set of which A and B are subsets of is left
implicit.

• f : x → y denotes various kinds of morphisms, usually disam-
biguated by a noun phrase before it. Example: “a functor F : C
→ D”.

• α : F ⇒ G denotes that α is a natural transformation from F to
G, for two parallel functors F,G : C → D.

• α x denotes the x component of a natural transformation α : F
→ G for x : Ob C, where F,G : C → D.
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3 Categories with attributes and definitions

We will introduce the notion of categories with definitions, which is a
slight variation of the notion of categories with attributes (CwA). In
fact, one can see categories with definitions as categories with attributes
equipped with a bit of extra structure. For the reader already famil-
iar with categories with attributes, we may summarise categories with
definitions as extending categories with attributes with an operation
for extending contexts with defined terms. This extension mechanism
allows reasoning about dependencies between terms.

One motivation for this notion comes from computer science. Inter-
preters for programming languages often need to keep track of what is
called an environment — a set of names, each equipped with either a
declaration that it is a variable, or a definition if it is a defined term.
When a name is encountered in a term, the interpreter looks it up in
the environment to see if it is defined or a variable, and may replace it
by its definition in the course of evaluation. Thus, we would like a for-
malism which captures the notion that contexts include not only a list
of assumptions, but also a set of terms thus far constructed and defined.

Categories with definitions appeals also to our constructive instincts,
where our model mathematician may not encounter infinitely many
terms at once, but keeps a finite number of them in his mind or on paper,
and considers at each point a finite number of new possible terms which
he can extend his investigation with. A category with definitions may
model this by only making a finite number of terms available in each
context, and adding more terms only once some of the previous terms
have been defined. It will also make the distinction between the name
of a defined term and the term it self.

One thing to note, is that we will consider arrows to go in the oppo-
site direction of what is usually done in CwAs. That is, we will study
covariant CwAs, as opposed to the standard, contravariant ones. For ex-
ample, we will have an “inclusion morphism” ι A : Γ → Γ.A, instead of
a “projection morphism” p : Γ.A → Γ. The reason is that we want to
see contexts, as collections of names36, and morphisms should be map-
ping between those names. The context Γ.A has all the names of Γ, plus
a new name for a variable of type A. Thus there is naturally an inclusion
of the names of Γ to the names of Γ.A.

36By name, we will mean a way to reference a term. In CwAs there is no
distinction between a term and a name, but categories with definitions will
have such a distinction.
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3.1 Categories with Attributes

Categories with attributes were introduced in Cartmell 1986, and have
been successfully used to give semantics of intensional type theory. One
of the more celebrated results is that the syntax of type theory gives an
initial CwA37, and thus models can be constructed as morphisms from
the syntactic CwA to another CwA. We will defer a precise definition of
CwAs a bit, and instead give an account of CwAs based on the intuition
of contexts as collections of variables (and terms).

A category with attributes is a category C, with some extra struc-
ture on it. We think of the objects Γ : Ob C as contexts — in the
syntactic case, sequences of typed assumptions — which form the basis
of our types and terms. The CwA comes with a functor Ty : C →
Set which for each context gives us the types available in that context.
For instance if (n:N) represents the context assuming a single natural
number, then we might have Vec : Ty (n:N) representing the type of
vectors of length n. Conceptually, Vec is a type depending on the type
N. Usually, one assumes that there is an empty context () : Ob C,
which is an initial object — but it is not essential.

The fact that Ty is a functor means that we can substitute types
along context morphisms. As mentioned, we let substitution run forward
in the direction of the arrows in C, so Ty will be a covariant functor.
Concretely, if A : Ty Γ and σ : Γ → Δ then Ty σ A, often denoted
A[σ], is a type in Δ.

Once a type in a context is given, say A : Ty Γ, we can further
extend the context with a new variable of that type — which is denoted
Γ.A. The types in context Γ.A are intended to be types depending on
a variable in A. There is a morphisms giving the weakening substitution
ι : Γ → Γ.A. The context extension operation is functorial, so we can
lift morphisms σ : Γ → Δ to σ.A : Γ.A → Δ.A[σ]. Furthermore, ι
has a certain naturality with respect to this lifting — and the associated
naturality square is a push-out diagram.

Types are no fun without terms, but in CwA’s one does not usually
formulate terms explicitly as a functor, like one does for types. Instead
a term of type A : Ty Γ is a retraction t : Γ.A → Γ of the inclusion ι
: Γ → Γ.A. The intuition is that if there is a term of type A in Γ, then
t maps the variable in Γ.A to this term in Γ. Since t is a retraction (i.e.
t◦ι = id Γ) it leaves Γ fixed, so that the only information recorded in
t is the term. As an example, the null vector may be a term null :
(n:N,v:Vec n) → (n:N).

37Hofmann 1997.
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This completes our description of categories with attributes. Of
course, while our intuition is taken from the syntactic category of (some
unspecified) dependent type theory, any category with the mentioned
structure will do.

A category with definitions will be much like a CwA, but with an
explicit term functor which assigns each type in context to a set of
available terms, and a new operation which extends a context with a
name for a term. The idea is that when a context is extended with a
name for a term, the term becomes a part of the context — or in other
words it is defined — and can be used to make new types and terms.
Retractions of inclusions are not identified with terms, but are given the
role of representing names for terms already constructed. Thus, every
retraction of an inclusion gives rise to a term, but not all terms will have
an associated retraction.

3.2 Two simple examples

Before we give the definition of a category with definitions, we will con-
sider two examples of CwAs where there are no complicated dependency
structure on the types. Hopefully these can serve to give some intuition
for the definition to come.

Example E:1. First we will consider the category FinSet, and the
constant functor Ty : FinSet → Set, defined by Ty Γ := 1, for every
Γ : FinSet. The intuition is that we are in a single type setting, where
our contexts are merely sets of variables — all of the same type — and
we consider no other terms. Context extension is defined by Γ.∗ := Γ
+ 1 and σ.∗ = σ + id 1, and the inclusion ι := inl.

The terms t : Γ + 1 → Γ, namely retractions of ι, are just the
elements of Γ — so all terms are variables.

Example E:2. For our next example we will try to motivate how to
consider terms part of the context, and how variables and terms interact.

The idea behind this example is to have a single type, which we
think of as natural numbers, with two term constructors, zero and succ,
which we can use to extend the context with a defined element. For in-
stance, (x:N, y:N; zero; succ x; succ y; succ (succ x)) would
be the context with two variables where we have constructed the terms
zero succ x, succ y and succ (succ x).

Let bot : Poset → Poset be the functor freely adjoining a bottom
element, ⊥, and let F : Poset → Poset be the functor F X = bot (X



142 PART E: DEPENDENT TERM SYSTEMS

+ 1). We let η : Id Poset ⇒ bot be the obvious inclusion of a poset
X into bot X.

The objects of our category of contexts, C, will be finite sets X,
considered as discrete posets, equipped with functions m : X → F X.
Morphism (X,m) → (Y,n) will be functions φ : X → Y such that for
all x:X we have (F φ ◦ m) x ≤ (n◦φ) x.

Again, Ty : C → Set will be a constant functor, Ty Γ = {N}, and
our intuition this time is that our single type, N, is the type of natural
numbers. A context Γ = (X,m) represents a set of “natural numbers”
X, some of which are variables — namely those x : X for which m x =
⊥ — and others are either

• successors: m mapping them to their predecessor in (η◦inl)(X)
⊆ F X

• or zeros, m mapping them to η (inr ∗).

The restriction on the morphisms, F φ ◦ m ≤ n ◦ φ, ensures that
variables can be instantiated, and zeros and successors must be pre-
served. If one is concerned about circular successor chains one can fur-
ther add a well-foundedness requirement on the objects.

Context extension in for category is given by

(X,m).N := (X+1,m+(const⊥)),

which adds a single element which is mapped to ⊥ (i.e. which is a vari-
able). We see again that the terms in each context, Γ = (X,m), are
exactly the elements of X. Since any context has only finitely many el-
ements, we need to change context in order to access more elements of
N — and this is where we introduce the notion of extending a context
with a term.

3.3 Categories with definitions

Definition E:3. A category with definitions (CwD) consists of

1. A category C : Cat, called the category of contexts.
2. A functor Ty : C → Set, called the type functor. We will write

A[f] for Ty f A.
3. A functor Tm :

∑
(C,Ty) → Set, called the term functor. We

will write a[f] for Tm f a.
4. A functor -.- :

∑
(C,Ty) → C, called the context extension by

variable functor.
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5. A functor -;- :
∑

(
∑

(C,Ty),Tm) → C, called the context ex-
tension by definition functor. We will write Δ;a instead of the
more verbose (Δ,A);a.

6. A natural transformation ι : π0 → -.-, whose components we
will denote ι A : Δ → Δ.A, and such that the naturality squares
for ι are push-outs.

7. A natural transformation χ : -.- ◦ π0 → -;-, whose compo-
nents we will denote χ a : Δ.A → Δ;a, and such that the nat-
urality squares for χ are push-outs.

8. For each A : Ty Γ a term v A : Tm (Γ.A,A[ι]), such that

a) (v A)[f.A] = v (A[f])
b) (v A)[χ a] = a [χ a ◦ ι A], for every term a : Tm Γ A.
c) χ (v[f]) ◦ ι (A[f]) ◦ f = χ (v[f]) ◦ (f ◦ ι A).A, for ev-
ery f : Γ.A → Δ.38

We will refer to a category with definitions as a tuple
(C,Ty,Tm,-.-,-;-,ι,χ,v).

Remark E:4. The easiest way to compare categories with definitions
to categories with attributes is to notice that conditions 1,2,4 and 6 are
exactly the definition of a CwA.

If we only had conditions 1–7, then we could get a CwD from any
CwA by simply letting Tm be the constant empty set functor. However,
condition 8 ensures each retraction of an inclusion gives rise to a unique
term. The context Γ;a always has a retraction Γ;a.A[χ◦ι] → Γ;a
representing a[χ◦ι], given by the push-out property (see (1)), and is
therefore referred to as the context extending Γ with a name for a.

38This rule ensures that sections map injectively into terms, by identifying
maps which would discriminate between the section induced by f itself and the
section induced by v[f], in Δ;v[f]. One could avoid this by replacing this
rule with one that states that Ty and Tm maps the left hand side to to the same
maps as the right hand side, without them always being equal. Or, in the even
weaker case, that there are a coherent family of bijections Tm (B[(χ (v[f]) ◦
ι (A[f])) ◦ f]) ∼= Tm(B[χ (v[f]) ◦ (f ◦ ι A).A) for every B : Ty (Γ.A).
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Γ;a

Γ.A
(χ a ◦ ι A).A

��

χ a

��

Γ;a.A[χ◦ι]

∃!

��

Γ

ι A

��

χ a ◦ ι A
�� Γ;a

ι (A[χ◦ι])

�� id

�� (1)

Example E:5. Continuing Example E:2, to make it a category with
definitions, we define Tm ((X,m),N) := (X + (X + 1))/≈— the three
summands representing already constructed terms, new successors, and
new zeros, respectively — and ≈ is generated, co-inductively by:

• inl x ≈ inr y whenever η y = m x, where η : Id ⇒ bot is the
natural inclusion.

• inl x ≈ inl y whenever m x = η x’ and m y = η y’ and x’ ≈ y’.

We then have to identify morphisms, which pointwise map to equiv-
alent names. That is, given φ,ψ : (X,m) → (Y,n) we define φ ≈ ψ
to hold whenever inl (φ x) ≈ inl (ψ x) for every x : X.

Context extension by term definition is then given by the cases:

(X, m); [inl x] := (X+ 1, m+ const(m x)) (2)
(X, m); [inr (inl x)] := (X+ 1, m+ const ((η ◦ inl) x)) (3)
(X, m); [inr (inr ∗)] := (X+ 1, m+ const ((η ◦ inr) ∗)) (4)

which respects ≈. The natural transformation χ is the obvious inclusion,
and the variable term v N := [inl (inr ∗)].

We see that in this example all the well-founded contexts can be
constructed from the empty one, by repeated extensions with variables
and defined terms. Although the type N has only finitely many terms
in any given context — in particular, it has only one term in the empty
context, namely “zero” (η (inr ∗)) — we can construct all natural num-
bers (and all iterated successors of variables) by extending the context,
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one successor at the time. This exemplifies a kind of local finitist version
of type theory, where at any stage only finitely many types and terms
exists, but as we make these definite by extending our context more
appears, so that in aggregate any term is can be accessed.

3.3.1 Example

The usual CwA of sets, also gives rise to a CwD. The underlying category
is the opposite category of sets39. Types in Γ are sets A equipped with
functions A → Γ. Terms are sections of these functions. Transport
of types along functions is by push-out (pull-back in Set). Context
extension with a type (A,f) passes to the context A. Extension of a
context with terms does nothing.

3.3.2 Syntax

Although we will not give a complete syntactic equivalent to that of a
CwD, we will try to give some intuition as to what a syntactic counter-
part would look like.

Let us consider the structural rule of substitution. While it is not
always an explicit rule of dependent type theory it is usually a derivable
rule. It is the rule for any judgement J, given as

Γ, x:A ! J Γ ! a : A
−−−−−−−−−−−−−−−−−−−−−−−−− SUBST

Γ ! J[a/x]

A syntactic counterpart to CwDs would abandon substitution in this
sense, and rather use a special context Γ;x:=a:A which instantiates the
variable x to the value a. The rules would look like the following:40

Γ ! a:A
−−−−−−−−−−−−−−−−−− DEF, x fresh for Γ

(Γ; x:=a:A) context

39The oppositeness can be rationalised by imagining that the context in op
Set are actually all ways one could give values to the variables in the context.
Thus the context is, morally, placed in the domain of a function — which is
a “contravariant” position: the functor op C × C → Set mapping (A,B) to
Hom(A,B) is contravariant in the A argument.

40We use the usual convention that if a judgement occurs in a rule its pre-
suppositions are automatically assumed. For instance Γ ! a:A presupposes Γ
context and Γ ! A type.
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Γ, x:A ! J Γ ! a:A
−−−−−−−−−−−−−−−−−−−−−− INST

Γ; x:=a:A ! J

Γ, x:A ! J Γ ! a:A
−−−−−−−−−−−−−−−−−−−−−−−− DEF-≡

Γ; x:=a:A ! x ≡ a : A

These rules are reflected in the semantic definition of categories with
definitions. DEF is context extension by a definition, INST corresponds
to the χ substitutions. Finally, DEF-≡ reflects the equality (v A)[χ a]
= a [χ a ◦ ι A]. Note that ≡ here denotes the usual judgemental /
definitional equality of terms in the type theory.

Example E:6. To demonstrate how to use the above rules, consider a
type theory with the following rules (in addition to the basic structural
rules):

−−−−−−−−−−−−− N-FORM
Γ ! N type

−−−−−−−−−−−− 0-I
Γ ! 0 : N

−−−−−−−−−−−−−−−−− S-I
Γ,x:N ! S x : N

Then to construct the term SS0, we have the following derivations.
For brevity we suppress the typing in the definitions.

−−−−−−−−−−− S-I −−−−−−− 0-I
x0:N ! S x0:N ! 0:N

−−−−−−−−−−−−−−−−−−−−−S-I −−−−−−−−−−−−−−−−−−−−−− INST
x0:=0, x1:N ! S x1: N x0:=0 ! S x0:N

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− INST
x0:=0;x1:=S x0 ! S x1 : N

Notice how a type theory along these lines would be sensitive to the
difference between the formulation of S-I above and the rule:

Γ ! n : N
−−−−−−−−−−−−− S-I’
Γ ! S n : N
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The rule S-I’ would give infinitely many terms of type N without
needing further extensions of the context.

3.4 Comparison with categories with families

Categories with families (CwFs) differ from CwAs by not having the
lifts with the push-out property, and instead having an operation which
takes an f : Γ → Δ and a term a : Tm (Δ,A[f]) to a map 〈f,a〉 :
Γ.A → Δ. In addition one introduces a special variable term v A : Tm
(Γ.A,A[ι]). These two are then subject to the equations

〈f,a〉 ◦ ι A = f
v[〈f,a〉] = a
〈ι A, v A〉 = id (Γ.A)
〈g◦f,a[g]〉 = g◦〈f,a〉

CwDs have both the variable term and the push-out properties. The
CwF operation of extending a substitution with a term can be emulated
by defining 〈f,a〉 : Γ.A → Δ;a by 〈f,a〉 := χ a ◦ f.A. This satisfies
the equations:

〈f,a〉 ◦ ι A = (χ a ◦ ι (A[f])) ◦ f
v[〈f,a〉] = a[χ a ◦ ι (A[f])]
〈ι A, v A〉 = χ (v A)
〈g◦f,a[g]〉 = (g;a)◦〈f,a〉

As noted, every CwD has a CwD substructure, and this substructure,
through the well known equivalence of CwAs with CwDs, also gives rise
a definition of extending a substitution, but this time with a retraction.
This extension is defined for every f : Γ → Δ and every retraction r
: Δ.A[f] → Δ as. . .

[f,r] : Γ.A → Δ
[f,r] := r◦f.A

We have the following relationship between the two (by 8c in Defi-
nition E:3):

〈f,v[r]〉 = χ (v[r]) ◦ ι (A[r]) ◦ [f,r]

3.4.1 Essentially categories with attributes

We can now define a CwA as a CwD where the extra term structure
coincides with retractions, and is thus redundant.
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Definition E:7. A category with attributes is a category with defini-
tions,
(C,Ty,Tm,-.-,-;-,ι,χ,v), such that for all Γ : Ob C and A : Ty Γ

• Γ;a = Γ, for all a : Tm (Γ,A), and
• χ a is a retraction of ι A for all a : Tm (Γ,A).

Remark E:8. This is not the standard definition of a CwA. But one
can see that it is basically equivalent by observing:

• that we can turn all the arrows around,
• each term a : Tm (Γ,A) gives a retraction χ a of ι A,
• every retraction t : Γ.A → Γ gives a term v A[t]
in A[ι][t] = A[t◦ι] = A[id Γ] = A, and

• χ (v[t]) = t for every retraction, by applying 8c) of the definition
of a CwD.

Since v[χ a] = a by the definition of a CwA, and χ (v[t]) = t,
we see that there is a bijection between retractions of ι A and terms Tm
(Γ,A), so for CwAs Tm, -;- and v are all superfluous.

Definition E:9. A category with definitions is essentially CwA if χ a
◦ ι A is an isomorphism for every a : Tm (Γ,A).

Remark E:10. The difference between CwAs and essentially CwAs
is that essentially CwA structure is preserved by equivalence, while the
definition of CwA includes an equality of objects, which may not be
preserved by an equivalence.

We will now construct a left adjoint to the inclusion of essentially
CwAs into CwDs. The idea is consider contexts up to “term telescop-
ing”, i.e. Γ;a0;a1;a2;· · · , so that a type or term will belong to Γ if it
appears in any term telescope on Γ. Likewise, a morphism from Γ to Δ
may map Γ to any term telescope on Δ.

3.5 Morphisms

In order to actually say what our adjunction is, we first need to define
what morphisms of CwDs are. There are a few possible choices, but let
us stick with the following.
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Definition E:11. Given two CwDs,
C = (C,Ty,Tm,-.-,-;-,ι,χ,v) and
C’ = (C’,Ty’,Tm’,-.-’,-;-’,ι’,χ’,v’), we define a morphism from
C to C’ to consist of

• a functor F : C → C’,
• a natural transformation ε : Ty ⇒ Ty’ ◦ F,
• a natural transformation δ : Tm ⇒ Tm’ ◦ (F,ε),
• a natural isomorphism φ : -.-’ ◦ (F,ε) ⇒ F ◦ -.-, and
• a natural isomorphism ψ : -;-’ ◦ ((F,ε),δ) ⇒ (F,ε) ◦ -;-,
• such that

– Fι = φ ◦ ι’(F,ε),
– (F,ε)χ = ψ ◦ χ’((F,ε),δ), and
– δ (v A) = v (ε t) for every Γ : Ob C and A : Ty Γ.

Remark E:12. Since the morphisms are functors, there is a natu-
ral concept of 2-morphism associated — meaning that we can form a
2-category of CwDs with natural transformations satisfying four natu-
ral conditions. However, we will not give any results concerning this
2-categorical nature of CwDs. We will only use the fact that the collec-
tion of morphism, CwD(C,D), between two CwDs forms a category when
stating two conjectures.

Definition E:13. Given two CwDs, C = (C,Ty,Tm,-.-,-;-,ι,χ,v)
and C’ = (C’,Ty’,Tm’,-.-’,-;-’,ι’,χ’,v’), and two CwDmorphisms
F = (F,ε,δ,φ,ψ) and F’ = (F’,ε’,δ’,φ’,ψ’) we define a 2-morphism
from F to F’ to consist of

• a natural transformation α : F → F’, such that
• Ty’α ◦ ε = ε’,
• Tm’(α’) ◦ δ = δ’ where α’ : (F,ε) ⇒ (F’,ε’) is given by

α’ (x,A) := α x : (F x, ε x A) → (F’ x, ε’ x A),
• α(-.-)◦φ = φ’◦(-.-)’α’, and
• α’(-;-)◦ψ = ψ’◦(-;-)’α’’ where

α’ : ((F,ε),δ) ⇒ ((F’,ε’),δ’) is given by α’’ ((x,A),a) :=
α x : ((F x, ε x A),δ x A a) → ((F’ x, ε’ x A),δ’ x A a),

3.6 Free essentially CwAs

We will now construct a free essentially CwA given any category with
definition.
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Definition E:14. Given a category with definitions
C = (C,Ty,Tm,-.-,-;-,ι,χ,v) and a context Γ : Ob C, denote by T
Γ the collection of sequences t : Ob

∑
(
∑

(C,Ty),Tm)∗ such that

• (π0◦π0) (t 0) = Γ, if the length of t is greater than 0.
• (π0◦π0) (t (i+1)) = (-;-) (t i) for all i+1 < len t

We will call the elements of T Γ term telescopes.
We denote by head t : Ob C the final extended context of t, namely

head t := (-;-) (t (len t - 1)), if the length of t is greater than zero,
and head () = Γ.

Definition E:15. Given a category with definitions
C = (C,Ty,Tm,-.-,-;-,ι,χ,v) and a context Γ : Ob C and a term
telescope t : TΓ, we define a functor chain t : [(len t) + 1] →
C, where [(len t) + 1] is the finite linear order of length (len t) + 1
considered as a category, by

• chain t 0 := Γ,
• chain t (i+1) := (-;-) (t i) for all i < len t, and
• chain t (r i) := (χ ((π1◦t) i))◦ι ((π1◦π0◦t) i), on morphisms

r i : i → i+1.

compose (chain t) : Γ → head t denotes the composition of all
morphisms in the chain.

Definition E:16. Given a category with definitions
C = (C,Ty,Tm,-.-,-;-,ι,χ,v) we define the category C[(χ◦ι)−1] by

• Ob C[(χ◦ι)−1] := Ob C

• Mor(Γ,Δ) is the collection of tuples (t,σ) such that

– t : TΔ
– σ : Γ → head t
– where we identify (t,σ) and (t’,σ’) whenever there is a

u : TΔ and morphisms f : head t → head u and f’ :
head t’ → head u under Δ, such that ‘f ◦ σ = f’ ◦ σ’.

• Composition of (t,σ) : Γ → Δ and (t’,σ’) : Δ → Θ is given
by transporting t along σ’ and appending it to t’ to obtain a
longer term telescope, and then composing σ with the lifting of
σ’. See diagram (5).
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head t σ’;t �� head (t’·t[σ’])

Γ

σ

��

Δ

compose t

��

σ’
�� Θ

compose t’

�� (5)

Definition E:17. Given a category with definitions
C = (C,Ty,Tm,-.-,-;-,ι,χ,v) we define the category with definitions
C+ by
C+ := (C+,Ty+,Tm+,-.-+,-;-+,ι+,χ+,v+) where

• C+ := C[(χ◦ι)−1] as above,
• Ty+ Γ := { (t,A) | t : T Γ ∧ A : Ty (head t)} / ≈, where

(t,A) ≈ (t’,A’) whenever there is a u : TΔ and morphisms
f : head t → head u and f’ : head t’ → head u under Δ,
such that A[f] = A’[f’],

• Tm+ (t,A):={(u,a) | u : T (head t)∧
a : Tm (head t, A[chain u]}/≈, where (u,a) ≈ (u’,a’) when-
ever there is a u’’ : TΔ and morphisms f : head u → head
u’’ and f’ : head u’ → head u’’ under Δ, such that a[f] =
a’[f’],

• Γ.(t,A) := (head t).A,
• Γ;(u,a) := (head u);a,
• ι (v,A) := ((),ι A ◦ (compose (chain t))),
• χ (u,a) := ((),χ a ◦ (compose (chain u)).A), and
• v+(t,A) := ((),v A)

Lemma E:18. For all C : CwD we have that C+ is essentially CwA.
Proof: Given Γ and (t,A) : Ty+ Γ and (u,a) : Tm+ (Γ,(t,A)),

we must construct an inverse to χ (u,a) ◦ ι (t,A).
First observe the following simplification, where · denotes telescope

composition.

(χ (u,a) ◦ ι (t,A))
= ((), χ a ◦ (compose (chain u)).A ◦ ι A ◦ compose (chain t))
= ((), χ a ◦ ι (A[u]) ◦ compose (chain (t·u)))
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The inverse can be given as,
σ := (t·u·((head u,A[t]),a), id ((head u);a)). Composing from
the left gives:

σ ◦ (χ (u,a) ◦ ι (t,A))
= (v·u·((head u,A[t]),a), id ((head u);a))

◦ ((), χ a ◦ ι (A[u]) ◦ compose (chain (t·u)))
= (t·u·((head u,A),a), χ a ◦ ι (A[u]) ◦ compose (chain (t·u)))
≈ ((),idΓ)

To show that composition form the right also yields the identity, one
can spell out the composition and use the push-out properties of χ and
ι. For illustration we will consider the special case u = v = (), which
still captures the general idea.

Γ;a

Γ;a
(χ a◦ι A).A;a

��

id

��

Γ;a;a[χ a◦ι A]

f

��

Γ;a

id

��

Γ

χ a◦ι A

��

χ a◦ι A
�� Γ;a

χ a[χ a◦ι A]◦ι A[χ a◦ι A]

��

id

�� (6)

The square in diagram (6) is a push out, and f is the unique mor-
phism given by the universal property of push-outs. Together with the
identity, f shows that χ ((),a) ◦ ι ((),A) ◦ σ ≈ id {Γ;a}.

Theorem E:19. The inclusions of essentially CwAs into CwDs has a
left adjoint, namely -+.

Proof : The unit of the adjunction is the map η : C → C+ given by
η CΓ := Γ and η C σ := (Δ,σ) (where σ : Γ → Δ). The actions on
types and terms are similarly simple inclusions.

The co-unit is the map ε : C+ → C which for every essentially CwA
C, maps ε CΓ = Γ and ε C (v,σ) = (compose (chain v))−1◦σ. Types
and terms are also transported along (compose (chain v))−1.
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The induced maps between C+ → D and C → D (for D essentially
CwA), form a bijection.

Remark E:20. Theorem E:19 can be seen as a kind of definition elim-
ination. It also demonstrates that if one is interested in models as CwD
morphisms into op Set, which is a CwA, and hence essentially CwA,
then the definition structure on the CwD is irrelevant. This matches
the traditional expectations of definitions — namely that they can be
eliminated and have no impact on semantics. However, we are free to
consider semantics of a CwD as morphism into some CwD which is not
essentially CwA, to get semantics which does not obey the common
expectations.

3.7 Analogy with sharing

Sharing is a term used in computing when structurally equal parts of a
data structure are stored at the same memory location. For instance,
to store the expression 2·(2+2)·(2+2), one would not need to store the
number 2 in five different memory locations, neither would one need to
store the summation (2+2) twice. It suffices to store the terms once,
making sure that they are correctly referenced elsewhere. This tech-
nique saves memory, at the cost of spending time figuring out which
substructures can be shared.

In mathematics there is a clear analogue with definitions. We would
rather not cite the term

∑∞
n=0 1/n! every time, instead of using the well

known constant e. Neither would we like to say “a set equipped with
a binary operation, which is associative, has an identity and inverses”
every time we meant “group”. Choosing the correct definitions can be an
art, and some times the most complicated expressions become clear and
understandable when the subterms are given appropriate names. Giving
names to phenomena, mathematical or otherwise, is key to recognising
patterns.

Categories with definitions can be seen as an attempt to mimic the
process of sharing in the semantics of dependent type theory. Just as
structures are committed to memory, terms extend the contexts of a
CwD. Once the context is extended, it can be used to form several new
terms, without needing to reconstruct it every time.
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4 One-way Categories

In this section we give a short introduction to one-way categories.
The basic idea is that each object in the category represents a type,

and an arrow represents a dependency between types. Composition
expresses the transitivity of dependency. Identities are more or less just
along for the ride. Given such a type category, a functor to Set is a
structure instantiating each type with a set, dependencies represented
by functions.

Definition E:21. A outward one-way category is a category C such
that the relation ≺ : Ob C → Ob C → Prop, defined by x ≺ y :=
∃f : Hom C x y f �= (id x), is well founded, in the sense that for
any P : Ob C → Prop such that (∀ x (∀ y (x≺y → P y)) → P
x) we have P x for all x : Ob C.

Furthermore, we require that given any f : Hom C x y either y =
x ∧ f = id x or ¬(x = y ∧ f = id x).

Definition E:22. An inward one-way category is a category, C : Cat,
such that op C is outward one-way.

Remark E:23. The outward and inward direction come from the di-
rection of arrows, out from an object, and into an object. An outward
one-way category has no infinite chain of composable, non-identity mor-
phisms going out from any given object.

Remark E:24. Though one-way categories are categories, and we will
consider functors defined on them – one-wayness is not really a property
of categories, since the notion does not respect equivalence of categories.
It is more appropriate to consider one-way categories as a kind of com-
binatorial object of their own.

Remark E:25. We will from here on drop the prefix “outward” when
talking about outward one-way category, since outward will be our de-
fault one-wayness.

4.1 Structures

We will now define the notion of a structure for a one way category. The
idea is that we need a set for each sort: say A x is the set of elements of
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sort x in the structure A. Then, for each dependency we need a compat-
ible function assigning each element of the structure to the parameters
of its sort: say f : x → y is a dependency between the sorts x and y,
then for each a : A x we need to assign some A f a : A y.

Definition E:26. Given an (outward) one-way category, C, we define
the category of C-structures to be [C,Set], the category of functors
from from C to Set. We may some times refer to C-structures as shapes.

A structure A : [C,Set] is finite if
∑

(C,A) is finite. We denote
the full subcategory category of finite C-structures by {C,Set}.

Remark E:27. Makkai 1995 requires that top-level fibres of structures
are subsingletons. This is a reasonable requirement, but we will not
include this as part of our structures.

Remark E:28. A C-structure, A, is sometimes better seen as the cat-
egory

∑
(C,A) living over C by π0 :

∑
(C,A) → C. We can see the

objects of
∑

(C,A) as typed points, and if the type of an object is de-
pendent on other types, the required arguments are found by following
the arrows out of the object.

4.2 Extending structures

We will now define a way to extend C-structures with a single element,
of a given sort. This lays the foundation for the next section, and the
extension operation gives a convenient layer of abstraction.

Definition E:29. Given a one-way category, C, we let y : op C →
[C,Set] denote the contravariant Yoneda functor. Given x : Ob C we
will say that y x is the shape of x.

We then define the functor ∂ : op C → [C,Set] by

∂ x y = Hom x y - id x and
∂ f g = f ◦ g.

Notice how we here use that C is a one-way category. Given x : Ob
C we will say that ∂ x is the border shape of x.

Furthermore, we define a natural transformation d : ∂ ⇒ y by the
obvious inclusion Hom x y - id x ⊆ Hom x y.
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Definition E:30. We define the functor E : [C,Set] → Set by map-
ping a structure A : Ob [C,Set] to the set of pairs, (x , α), where x
: Ob C and α : ∂ x ⇒ A. We define E on natural transformations, ε
: A ⇒ B, by E ε (x, α) = (x, ε ◦ α).

Definition E:31. We define an action of E on [C,Set], namely ext
:
∑

([C,Set],E) → [C,Set], by letting ext (A, x, α) be the push
out of the diagram. . .

∂ x

d x
��

α �� A

y x

. . . in [C,Set].

Definition E:32. We denote by ι : π0 ⇒ ext the natural transfor-
mation given by the right hand side of the push out diagram:

∂ x

d x
��

α �� A

ι (A,x,α)
��

y x �� ext (A,x,α)

Definition E:33. We denote by ∗ : ext (A,x,α) x the image of id
x : y x x by the push-out of α by d x (the lowermost arrow in the
above diagram).

Remark E:34. One can regard C-structures as a kind of cell com-
plexes. Each object of C represents a kind of face, and the maps out of
an object describes the subfaces. There is a canonical C-structure y x for
each x : Ob C given by the Yoneda embedding. The ext construction
takes as input the border of a face α : ∂x ⇒ A and glues a face to it,
to obtain ext (A,x,α). The new face of kind x lies in ext (A,x,α) x
and it is this face we denote by ∗.

Example E:35. The category Δ+, of finite, inhabited, linear orders
and injective monotone maps is an inwards one-way category. Thus op
Δ+ is a one-way category. The category [op Δ+,Set] is of course the
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well known category of semisimplicial complexes. Given a semisimplicial
complex A : Ob [op Δ+,Set], the set E A is the set of ways we that
we could possibly glue a new face to A. Given a face f : E A then ext
(A,f) is the complex resulting from gluing f to A. Notice that f : E A
has two components; f ≡ ([n+1],α), where [n+1] is an n-simplex41,
and α : ∂ [n+1] ⇒ A which maps the border of the simplex into A.
The border of [n+1], namely ∂ [n+1], coincides with the usual notion
of border of a simplex.

4.3 The category with attributes of structures

Proposition E:36. For any one-way category C, we can form a cate-
gory with attributes structure on [C,Set] such that Ty := E and -.-
:= ext.

Proof: The required push-out properties are satisfied by definition
of E . Terms are simply the sections.

Remark E:37. The above proposition is the formalisation of the in-
tuition stated previously about how a one-way category forms a type
system. We conjecture that if we define a new kind of semantics C by
considering morphisms into other CwDs, this specialises to the semantics
we already know, in the case of the op Set.

Conjecture E:38. op [C,Set] ∼= CwA([C,Set], op Set).

Propositions E:39. The inclusions Γ → Γ.A in the CwA structure
on [C,Set] are monomorphisms.

Proof: By definition ι A : Γ → Γ.A is a push-out of a mono. In
[C,Set] any push-out of a mono is mono.

Remark E:40. A CwA in which the inclusions are monomorphisms
(or, in more standard/opposite terms the projections Γ.A → Γ are epi)
can in some way be seen as being intensional. From a type theoretical
perspective this means that if Γ ! a,a’ : A and Γ.(x:B) ! a ≡ a’
: A then already Γ ! a ≡ a’ : A. This principle is called strength-
ening. This is not true in extensional models such at the usual CwA
structure on Set; consider extending a context with a variable of type
∅. Type theory with equality reflection, sometimes called extensional

41We use the notation [k] to denote the canonical linear order with k ele-
ments, not k+1 elements
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type theory, also fails this property, since Id A a a’ ! a ≡ a’ : A
for any a, a’ : A. But it is true in the syntactic CwA of intensional
type theory.42

4.4 The category of corollas

Now we will define a category of corollas, which will form the basis of
the next session.

Definition E:41. Given a one-way category C, the category of C-
corollas, ∇ C, is defined by:

• Ob (∇ C) = {(s,e) | s : Ob [C,Set] , e : E s}
• Mor (s,e) (s’,e’) is the set consisting of pairs (f0,f1) such
that

– f0 : s → s’
– f1 : ext s e → ext s’ e’
– (ι (s’,e’)) ◦ f0 = f1 ◦ (ι (s,e)) (see diagram below).

s

ι (s,e)
��

f0 �� s’

ι (s’,e’)
��

ext (s,e)
f1

�� ext (s’,e’)

Definition E:42. Given a morphism f ≡ (f0,f1) : (s,e)→(s’,e’)
we say that f lifts if there is f* : ext (s,e) → s’ such that f0 =
f* ◦ ι (s,e) and f1 = ι (s’,e’) ◦ f*.

s

ι (s,e)
��

f0 �� s’

ι (s’,e’)
��

ext (s,e)

f’
��

f1
�� ext (s’,e’)

Lemma E:43. For each f such that f lifts the lift is unique.
Proof: ι (s’,e’) is a monomorphism.

42For an example of strengthening for a dependent type system, see Theorem
6.6 p. 35 of Harper and Pfenning 2005.
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Lemma E:44. For any morphism (f0,f1) : (s,e) → (s’,e’) in
∇C, if f1 ∗ �= ∗ then f1 lifts to a morphism f* : ext s e → s’, such
that f* ◦ (ι (s,e)) = f0.

Proof: For each x : C we have that ext s e x is a either just the
image of ι (s,e) x or the disjoint union of ι (s,e) x and {∗} (this
follows from the decidability requirement we put on one-way categories).
Since ι (s,e) x is injective, we may map any element in it to an element
of s’ x by seeing what f0 does to the corresponding element in s x. For
∗ we know that f1 ∗ is in the image of ι (s’,e’), since it is not ∗, thus
we map it to the corresponding element in s’.

Example E:45. The category of (op Δ+)-corollas is the category
whose objects are semisimplicial complexes with a selected, top dimen-
sion face. The morphisms are maps of semisimplicial sets which map the
unselected faces to unselected faces — possibly mapping the selected one
to the selected one, but possibly mapping it to something else.

Definition E:46. Given a corolla (s,e) : Ob (∇C) and a C-structure
A, we define a pure, (s,e)-shaped operation on A to be a function φ
: (s ⇒ A) → (ext (s, e) ⇒ A) such that (φ α) ◦ (ι (s, e)) =
α, for every α : (s ⇒ A).

Remark E:47. The term “pure” in this context refers to that the
domain of the function is the entire set of natural transformations (s
⇒ A). We regard s as a context, in the sense that we defined a CwA
structure on [C,Set]. A more general notion of context will have some
elements of s decorated with definitions. This will allow restricting the
domain of the function, to give certain partial operations.

Example E:48. As an example of why such partial operations may
be interesting, consider the well known horn-filling operation on (semi-
)simplicial complexes. An (n+1) dimensional horn is a subsimplex H ⊂
∂ [n+2] obtained by removing a single (n-dimensional) face of ∂ [n+2]
[n+1]. Given a (n+1)-dimensional horn H, a horn-filling operation on
a simplicial complex A is an operation extending any α : H ⇒ A to a
full n+2 simplex y [n+2] ⇒ A.

A horn-filling operation extends the A-horn with two new faces in A,
so while it would make sense to define operations with multi-face out-
puts, we may also attempt see the horn filling as two separate operations
— one which fills out the missing face of the boundary, and second one
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which fills out the resulting boundary with a top face making a com-
plete simplex. However, here one must be careful. Not every boundary
of a simplex can be filled out – horn-filling only fills boundaries where
one face is constructed by the first step of the horn-filling operation. If
every boundary could be filled, the complex would have trivial homo-
topy. Thus, the last step, the boundary filling, is a partial operation,
taking only boundaries where one face is constructed from the first step
as input.

One way to describe the situation is to say that (for each horn H)
we have two operations called φ0 and φ1, and they are arranged in a
category, R, with a single non-identity arrow, f : φ1 → φ0. To each
operation we associate a complex with an extension: φ0 is assigned
the horn H together with an extension e0 : E H such that ext (H,e0)
∼= ∂ [n+2], while φ1 is assigned ∂ [n+2] and an extension e1 : E
(∂ [n+2]) such that ext (∂ [n+2], e1) ∼= y [n+2]. There is then
an obvious pair of inclusion maps making this a functor D : op R →
∇ (op Δ+).

5 One-way Term Systems

In this section we give a definition of a one-way term system and give
basic properties of these.

The idea is to represent a rule introducing a C-term as an extended
C-shape. Some parts of the shape of a rule are variables, another are
already introduced terms, constructed by other rules. All the rules fit
together in an one-way category, and in total the system of rules will be
a functor on this category.

Definition E:49. Given a one-way category C, we define a one-way
term system on C consists of a pair (R,D) where

• R is a one-way category , and
• D : op R → ∇ C is a functor,
• such that for each x : Ob R and each pair of morphisms f : y0

→ x, g : y1 → x

– if π0 (D y0) = π0 (D y1) and (D f)1 (D y0) ∗ = (D f)1
(D y0) ∗, then y0 = y1 and f = g.

We refer to the objects of R as term-forming rules, and we say that
D assigns a rule to its shape.
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While we have not yet defined terms, we will refer to, given r :
Ob R and x : Ob C, elements p : ext (D r) x as subterms of sort x
occurring in the rule r. If p is the image of ∗ by (D f)0 (D y) for any
f : y → x it is a defined subterm, else it is a variable.

Example E:50. A very simple example of a one-way category is the
category with two objects, say E and T, a single non-identity arrow
typeOf : E → T. Let us name this category U, for the time being. It
can serve as a simple model of typed systems. U-structures are pairs of
sets — one which we can think of as the set of types, and the other the
set of expressions — along with a single function which assigns to each
expression a type.

Say we wanted to introduce a type constant t and an expression of
that type, say e. Then we would express that as a rule system, where
R is the category. . . 43

t

e

g

��

and where D : op R → ∇ U is the functor. . .

• sending t to (∂ T,T, id (∂ T)),
• sending e to (∂ E, E, id (∂ E)), and
• sending g to (e,d E) where e : ∂ T → ∂ E is the empty trans-
formation (∂ T is the constant ∅ functor), and d E : ext (D t)
→ ext (D e) type-checks since ext (D t) = ext (∂ T,T, id
(∂ T)) = y T = ∂ E and ext (D e) = ext (∂ E,E, id (∂ E))
= y E.

We see in this example that the rule t has a single subterm of sort T,
namely the conclusion ∗ : ext (D r) T defined by the identity id T.
On the other hand, e has two subterms: the conclusion and the subterm
defined by g, namely (D f)1 * : ext (D e) T, of sort T.

Example E:51. While rules of a term system cannot introduce equa-
tions, one can add a sort of “equalities” and consider the terms there

43R is only incidentally isomorphic to U, here.
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as proofs of equality. As an example we formulate the rules for an E-
category — that is a category, where the morphisms forms setoids rather
than sets.

The underlying one-way category for these structure is the category,
E, generated by the graph (7), and subject to the equations:

dom ◦ lhs = dom ◦ rhs
codom ◦ lhs = codom ◦ rhs

Eq

lhs
��

rhs
��

Mor

dom
��

codom
��

Ob

(7)

The structures in [E,Set] consist of a set of objects, a set of mor-
phisms and a set of equations of morphisms. Each morphism has a
domain object and a codomain object and each equation has a left hand
side morphism and a right hand side morphism, such that the domain
and codomain of each side agrees.

The category R of rules for an E-category is the category generated
by the following graph:

assoc

���� �� ��

lid



 ��

rid

�� ��
comp id refl trans sym

Each arrow inR represents an application of the rule in the codomain
in the formulation of the domain. For example, the rule for associativity,
f◦(g◦h) = (f◦g)◦h, contains four applications of the composition rule.
Hence there are four arrows from assoc to comp — these will appear as
the four nodes c0,· · · ,c3 in the diagram for D assoc (diagram 9). The
shapes of each rule, given by D : op R → ∇E, may be illustrated by
the following graphs, representing corollas in ∇E.

The nodes of the diagrams below are marked with sorts. For ex-
ample the node x:Ob appearing in the diagram of D id means x ∈
π0 (D id)(Ob). Solid arrows show how arrows in R acts on the fibres.
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For example the arrow appearing as dom : f:Mor → x:Ob in the dia-
gram for D(comp) illustrates that π0 (D comp) dom f = x — that is, the
domain of f is x. Dashed arrows represents arguments for nodes defined
by applying some rule. Finally, one node of each diagram is marked ∗,
and represents the extension of the corolla.

D id is the shape in [E,Set] where the only non empty fibre is E Ob
= {x}, along with an extension of a single morphism, marked ∗.

∗:Mor

dom
��

codom
��

x:Ob

D comp. . .

∗:Mor
dom

��

codom

��

f:Mor
dom





codom

��

g:Mor
dom



 codom ��
x:Ob y:Ob z:Ob

(8)

D assoc is illustrated in diagram 9. It introduces a new element in
Eq. There are four arrows assoc → comp in R which means that we
need to map the shape of D(comp) four times into the shape D(assoc).
These embeddings are illustrated with dashed lines – each composite
arrow has a dashed arrow to its two components. For the sake of read-
ability we have omitted the dom and codom decorations — for each arrow
the domain is specified by the leftmost, solid arrow, and codom by the
rightmost.
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∗:Eq
rhs

��

lhs

��
c2:=comp:Mor

 �

		! 		

c3:=comp:Mor

! 

����  �
x:Ob f:Mor"! �� y:Ob g:Mor"! �� z:Ob h:Mor"! �� w:Ob

c0:=comp:Mor

#" $#%$ &%

c1:=comp:Mor

#" $#'& ('

(9)

D lid. . .

∗:Eq
lhs

)(

rhs

*)

i:=id:Mor

��+* ,+

c:=comp:Mor"!

��-, .-
x:Ob f:Mor"! �� y:Ob

D rid. . .

∗:Eq
lhs

.-

rhs

/.

c:=comp:Mor ��

��)( 0/

i:=id:Mor

��+* ,+
x:Ob f:Mor"! �� y:Ob

D refl. . .

∗:Eq

lhs
+*

rhs
,+

x:Ob f:Mor"! �� y:Ob



5. ONE-WAY TERM SYSTEMS 165

D trans. . .

∗:Eq

10 21

α:Eq

�� ��

β:Eq



 ��
f:Mor

�� 		

g:Mor



 ��

h:Mor

�� ��
x:Ob y:Ob

D sym. . .

α:Eq

lhs
�� rhs 0/

∗:Eq
rhs

-,
lhs
��

f:Mor

�� 0/

g:Mor

-, ��
x:Ob y:Ob

5.1 Structures

Definition E:52. Given a C-structure A, a shape s : Ob [C,Set]
and extension e : E s, we define an assignment on A with shape (s,e),
as a function φ defined on some subset dom φ ⊆ (s ⇒ A), which takes
every α ∈ dom φ to some φ α : ext s e ⇒ A such that φ α ◦ (ι
(s,e)) = α.

Definition E:53. Given a C-structure A, and a one-way term system
(R,D) on C, an (R,D)-structure on A consists of:

• an assignment φ x on A with shape D x, for each x : Ob R,
• such that for each x : R, we have that

– dom (φ x) = { α : π0 (D x) ⇒ A | ∀ y ∀ (f : x→y)
(D f lifts) (α◦(D f)0 ∈ dom (φ y)) → (α ◦ (D f)*)=
(φ y (α◦(D f)0)} (See diagram 10)
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– for each f : y → x and α : π0 (D x) ⇒ A we have that
(φ x α)◦(D f)1 = (φ y (α◦(D f)0) (See diagram 10)

π0 (D y)
(D f)0 ��

ι

��

π0 (D x)

α

32

ι

��
ext (D y)

(D f)∗ 43

φ y (α◦(D f)∗)
54

(D f)1
�� ext (D x)

φ x α

��
A

(10)

Example E:54. Let us illustrate how assignments work by instanti-
ating Example E:51. An example E-structure A can be given by

• A Ob := {x,y,z},
• A Mor := {f,g,h,id x,id y,id z},
• A Eq := {r f, r g, r h, r (id x), r (id y), r (id z)}, where
• A dom f := A dom (id x) := A codom (id x) := x
• A codom f := A dom (id y) := A codom (id y) := y
• A dom h := x
• A codom h := A dom (id z) := A codom (id z) := z,
• A dom h := y,
• A codom h := z,
• A lhs (r f) := A rhs (r f) := f,
• A lhs (r g) := A rhs (r g) := g, and
• A lhs (r h) := A rhs (r h) := h,

or more succinctly, in diagram form. . .
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r h:Eq

lhs
��

rhs
��

h:Mor
dom

65

codom

�6x:Ob f:Mordom"! codom �� y:Ob g:Mordom"!
codom

�� z:Ob

id x:Mor

codom

77

dom

88

r f:Eq

lhs

77

rhs

88

id y:Mor

codom

99

dom

::

r g:Eq

lhs

99

rhs

::

id z:Mor

codom

77

dom

88

r (id x):Eq

lhs

77

rhs

88

r (id y):Eq

lhs

99

rhs

::

r (id z):Eq

lhs

77

rhs

88

(11)

There are ten possible maps44 from π0 (D comp) (diagram 8, p. 163)
into our structure (11), that means that to specify an (R,D) structure
on A, we need to give a value to φ comp for each of those ten maps. In
this case we do not have any choice, for each mapping π0 (D comp) ⇒ A
there is a unique element of A Mor with the right domain and codomain
which we can extend with to obtain a mapping ext (D comp) ⇒ A.

Similarly for id, refl, trans, sym, assoc, rid and lid, in each case
there are a number of mappings which fit, but for each we have a unique
extension.

Example E:55. Going back to our motivating example of horn filling
operations in Δ+, we will define the following term system, (R,D).

R is the category generated by the graph, which is the disjoint union
over every horn H of dimension n+1:

φ1 H

r H
��

φ0 H

D : op R → ∇(op Δ+) is the functor mapping

• D (φ0 H) := (H,e0) where e0 is such that ext (H,e0) ∼= ∂[n+2],

44Two identity compositions for each of the three non-identity morphisms,
plus each identity morphism composed with itself, plus the composite g◦f.
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• D (φ1 H) := (ext (D (φ0 H)),e1), where e1 is such that
ext (ext (D (φ0 H)),e1) ∼= y [n+1], and

• D (r H) := ι.

5.2 Structure homomorphisms

There is a natural notion of structure homomorphisms, for (R,D) struc-
tures, forming a category Struct(R,D).

Definition E:56. Given two (R,D) structures, (A,φ) and (B,ψ) we
define an (R,D)-homomorphism from (A,φ) to (B,ψ), to consist of

• a natural transformation f : A ⇒ B such that
• ψ r (f◦α) = φ r α for each r : Ob R, and α : π0 (D r) ⇒ A.

Remark E:57. Definition E:56 is a quite strict definition of homo-
morphism. For instance, if we define E-category as in Example E:51,
a homomorphism between E-categories is not quite the same as an E-
functor since associativity proofs will have to commute on the nose. If
one wants a more convincing model of categories, one can consider the
subcategory where there are only reflexivity elements in Eq, as in Ex-
ample E:54. This full subcategory of Struct(R,D) will be equivalent
to the category of small categories and functors.

5.3 Connecting term systems with CwDs

A term system (R,D) is an object of quite concrete combinatorial na-
ture. In the examples we have considered R and D have been finite.
We would like to connect these finite objects with the usual categorical
semantics of type theory, namely CwAs. In this final section we will
give a conjecture up-front, and outline an attempt towards proving this
conjecture.

Conjecture E:58. Given a term system (R,D) we conjecture that
there is a CwA C(R,D) such that op Struct(R,D) � CwA(C(R,D),op
Set).

Conjecture E:59. Furthermore, we expect that in the case when R
is finite and the corollas D x are finite for all x : Ob R, that there is a
locally finite CwD CFin(R,D) such that
op Struct(R,D) � CwD(CFin(R,D),op Set)
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5.3.1 Environments

While we do not yet have a proof of these conjectures, we will provide a
few steps in the direction where we think a proof could be found. The
main idea is to construct a CwD of (R,D)-environments which we then
can complete to a CwD using the -+ construction. As a first step we
define a category environments, which could be taken as a starting point
for a category with definitions.

The intuition behind the following definition is that an environment
is a context in which some elements are given a definition as one of
the rules in R applied to other elements of the environment. These
definitions are structured as a functor [R,Set] which ensures correct
applications of the rules according to their dependency structure. A co-
cone collects all the defined terms and variables into a single structure.

Definition E:60. Given a one-way category C and a one-way term
system on C, (R,D), we define an (R,D)-environment to consist of

• a R-structure s : R → Set45

• a co-cone (c,ε) of ext ◦ D ◦ π0, i.e. c : [C,Set] and ε :
ext ◦ D ◦ op π0 ⇒ const c, where op π0 : op

∑
(R,s) →

op R is the obvious projection functor.
• such that:

– If r,r’ : Ob
∑

(R,s) are such that ε r ∗ = ε r’ ∗ in c,
then r = r’.

Definition E:61. A morphism of (R,D)-environments between two
environments, (s,(c,ε)) and (s’,(c’,ε’)), consists of

• a map ρ : s ⇒ s’ of R-structures,
• a map φ : c ⇒ c’ of C-structures,
• such that for each r : Ob

∑
(R,s) we have that φ ◦ (ε r) = ε’

(ρ r)

We denote by E0 : Cat the category of (R,D)-environments and
morphisms between them.

45Note that R-structure here does not refer to (R,D)-structure, but rather
the notion defined in E:26 on page 155.
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Definition E:62. We define Ty0 : E0 → Set by Ty0 := E◦F where
π0 : F → [C,Set] is the forgetful functor F (s, (c,ε)) := c.

We define Tm0 :
∑

(E0,Ty0) → Set on objects ((s, (c,ε)),t):
Ob
∑

(E0,Ty0) by defining Tm0 (Γ,t), where Γ = (s, (c,ε)) and t =
(x,α) to be disjoint union of

• {β : y x ⇒ c | β ◦ ι t = α : ∂x ⇒ s}, and
• the set of all pairs (e,δ) where

– e : E s, and
– δ : ext ◦ D ◦ op π0 ⇒ const (ext (c,t)), is such that

∗ δ(id R, ι e) = ι t ◦ ε, where (id R, ι) :
∑

(R,s)
→ ∑

(R,ext (s,e)) is the obvious inclusion.
∗ δ (π0 e,∗) ∗ = ∗.

Finally, we define:

• (s,(c,ε)).t := (s,(ext (c,t),ι t◦ε))
• (ρ,φ).t := (ρ, ext t φ)
• Γ;(inr β) := Γ
• (s,(c,ε));(inl (e,δ)) := (ext (s,e),(ext (c,t),δ), where

(e,δ):Tm t
• (ρ,φ);(inr β) := (ρ,φ)
• (ρ,φ);(inl (e,δ)) := (ext ρ,φ)
• ι0 t := (id,ι t) (by a slight overloading of notation).
• χ0 (e,δ) := (ι e,ι t), and
• v0 t := inr (π0 t,∗).

Remark E:63. The structure (E0,Ty0,Tm0,-.-,-;-,χ0,ι0,v0) will
not satisfy all equations required of a CwD. It will satisfy 1–7 of Def-
inition E:3 on page 142, but not for instance 8c), which would require
us to identify some maps of E0. If one could identify a well behaved
subcategory of E0, such as the environments in which each element is
unique up to definitional equality, this quotient may be easier to carry
out.

6 Future work

We have left quite a few questions open in this work. Aside from the
obvious task of proving or disproving the conjectures, there are several
ways one could wish to continue the work started here. We will name
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a few, which come to mind, but which we have not worked out in any
detail.

6.1 Rules which introduce equalities

The term systems presented here have rules which introduce terms. As
we saw with E-categories we could emulate equations by introducing an
equality sort, but it would be more satisfying to have “native” support
for rules introducing equalities. One way this might be achieved is to
introduce more elements in E s for each s : [C, Set]. These new
elements would represent pairs of compatible elements of some fibre of
s, which will then be identified when applying ext.

Complications with this approach is that one might no longer have
a unique rule introducing each subterm of a rule. One then finds one
self in need of coherence rules ensuring that each de-facto equality of
subterms is justified by applications of equality rules.

6.2 A weaker notion of homomorphism

As we saw in Remark E:57 the notion of homomorphism of (R,D)-
structures is quite strict and we could imagine weaker notions.

For example, one could, co-inductively or inductively, define two
elements a,a’ : A x as “indistinguishable” iff for each b : A y and non-
identity f : y → x, such that a = A f b, there is a b’, indistinguishable
from b, such that a’ = A f b’ and for every non-identity g : y → z
either g = f or A g b = A g b’. A weaker notion of homomorphism would
then only preserve operations up to indistinguishability.

6.3 Working out 2-categorical properties of CwDs

Categories with definitions form a 2-category, and an obvious line of
investigation is to work out how different constructions of 2-categories
apply to this specific case. For instance, one could suspect that whisker-
ing gives a way to pull back homomorphisms between models along
translations between theories. One could also work out what a monad
on a CwD is.
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