
Abstract
The following is a formalisation of many of the proofs of Part [multisets-

in-type-theory] and Part [iterative-sets] in Agda. Agda is a proof-checker
and programming language based on dependent type theory and pattern
matching, which allow a very close correspondence between the style of
proofs in the article and the formalised, machine-readable proof.

Some proofs are present both in the article and the formalisation, while
others are only present in one of them. Some proofs in the article are mere
sketches, while the details are in the formalised proof.

The original motivation for starting this formalisation was to make the
details of Lemma [fibre-equiv] in Part [multisets-in-type-theory] clear. In
fact, the informal proof in the article only reached its current form after
the formal proof was completed. After the formalised proof was done it
was a lot easier to pick out the important elements, which a human might
be interested in, hiding the tedious details behind the phrase “. . . can be
verified by -induction. . . ”.

A strength of Agda is that it gives easy access to term-normalisation.
Being able to normalise terms quickly opens up for more experimenta-
tion to simplify proofs than if each normalisation would be carried out
by hand. In our development this has manifested as simplifications of
the proof of Lemma [w-id] and Lemma [fibre-fun] of Part [multisets-in-
type-theory]. Both of which were first proved by more complicated path
computations, but once formalised, inserting the reflexivity proof various
places, idp, and allowing Agda to attempt unification, showed that there
were simplifications to be made.

Prerequisites

Proof-checkers are pieces of software, undergoing development for long periods
of time and therefore existing in many versions. Agda is no exception, and
it is a matter of fact that a proof formalised and checked by one version may
fail to check by the next version of Agda. This may be due to introduction of
errors in the new version, removal of errors from the previous version, or due
to intended changes in syntax. It is therefore of essence to specify along with
any formalisation what version of the proof-checker the code has been checked
with. If the formalisation depend on any library, such must also be specified
with versions. In practise, locating and installing old versions of all dependencies
– and all dependencies of dependencies, etc. – on a new system, may prove
difficult.

An alternative route, which requires some dedication, is to keep the formalisation
up to date with the latest changes in the proof-checker. At the very least, one
should aim to write the formalisation in such a way that it is not only machine-
readable, but also human-readable, so that in case the specific version of the
proof-checker should disappear, and the code cease to verify on any available

1

versions, the intention behind the code should be clear so that any able reader
can themself perform the changes needed for the code to verify on a later version.

Our formalisation depends on the HoTT-Agda library, which is a development
of Homotopy Type Theory in Agda.

Prerequisite Tested versions URL
Agda 2.4.2.4
HoTT-agda eb24ea20e1a28de31

Assumptions of the formalisation

Agda implements dependent type theory with pattern matching. Traditionally,
the way pattern matching has been implemented allows proofs of the uniqueness
of identity proofs (UIP) to type check1, which is inconsistent with Univalence.
However, recent version includes an option to tighten the restraints on pattern
matching so that one can no-longer prove UIP. This allows HoTT-agda, upon
which our development depends, to postulate the Univalence Axiom.

Agda allows defining new recursive data types and functions. To ensure consis-
tency of these it applies positivity checks and termination checks. However, all
types used in our development are well-known from type theory literature, and
thus we believe that the proofs should be transferable to any proof-checker with
a type system able to represent the following type constructs:

• Π-types

• Σ-types

• Binary sum types

• W-types

• Id-types

• A univalent universe

• (−1)-truncation (for set theoretical axioms on V)

• Mere set quotients (for set theoretical axioms on V)

The proofs concerning the identity type of W-types uses, η-reduction for functions
(i.e. (λx.fx) ≡ f). One may speculate that the proofs could be modified to hold
even if η-reduction only holds up to identity, but most dependent type systems
have some function type with η-reduction, so we do not pursue that road here.

1The principle states that for a, b : A and any α, β : IdA a b we have that Id αβ.

2

Case study

To demonstrate how the human readable proofs and the formal proofs relate, we
will have a closer look at a single theorem, and its incarnation in both article
and code. The theorem chosen is the theorem which shows that our chosen
notion of equality for multisets is equivalent to the identity type – given the
univalence axiom. This is found in Part [multisets-in-type-theory] as Theorem
[id-eq-theorem]. The code formalising the theorem is quoted below.

Id-is-Eq' : (i : ULevel) (x y : M i) → (x == y) ' Eq' x y
Id-is-Eq' i (sup A f) (sup B g) = IH ◦e EXT ◦e UA ◦e WLEM where

IH : Σ (A ' B) (\α → ((x : A) → (g (apply α x)) == (f x)))
' Eq' (sup A f) (sup B g)

IH = equiv-Σ-snd (\α → equiv-Π (ide _)
(\x → Id-is-Eq' i (g (apply α x)) (f x)))

EXT : Σ (A ' B) (\α → (g ◦ (apply α) == f))
' Σ (A ' B) (\α → ((x : A) → (g (apply α x)) == (f x)))

EXT = equiv-Σ-snd (\α → app=-equiv)

lem0 : {A : Type i} → (ua (ide A)) == idp
lem0 = ua-η idp
lem = equiv-induction

(\α → transport (T i) (fst ua-equiv α) == apply α)
(\A → ap (\f → coe (ap (T i) f)) lem0)

UA : (Σ (A == B) (\α → (g ◦ (transport (T i) α) == f)))
' Σ (A ' B) (\α → (g ◦ (apply α) == f))

UA = (equiv-Σ-snd (\α → coe-equiv (ap (\h → g ◦ h == f) (lem α))))
◦e (equiv-Σ-fst (\α → g ◦ (transport (T i) α) == f)(snd ua-equiv)) −1

WLEM : ((sup A f) == (sup B g))
' Σ (A == B) (\α → (g ◦ (transport (T i) α) == f))

WLEM = W-id-' (T i)

Id'Eq : (i : ULevel) (x y : M i) → (x == y) ' Eq x y
Id'Eq = \i x y → Eq'-is-Eq x y ◦e Id-is-Eq' i x y

Starting at the bottom, the term Id'Eq is the proof of the theorem we want.
We can see the statement of the theorem on the line above. The type Eq is the
name in the formalisation of =M , and ‘==‘ is the identity type.

While M in our paper was defined with an implicit dependency of a universe U ,
the Agda formalisation defines M i having an explicit dependency of a universe
level i. That’s why the type of Id'Eq starts with the quantification (i :
ULevel).

3

Looking at the definition of Id'Eq one quickly sees mention of something called
Eq’, which doesn’t appear in the proof of the article. This is because in its
natural formulation Eq lies one universe level below the identity type of M, and
it turned out that the cleanest way to handle this in Agda was to define an
auxiliary type with the same inductive definition as Eq on a higher level.

Thus, the essence of the proof is in the term Id-is-Eq’, and it closely corresponds
to the informal proof, which is a chain of equivalences. In the formalisation each
step is given short name: IH, EXT, UA and WLEM.

The informal proof has an addition step helping the reader recognise the definition
of a homotopy between two function. Agda usually needs no help recognising
definitional equalities. However, each step in the proof is easy enough that the
reader will understand without further explanation, Agda needs to be presented
the exact terms. Each step therefore is given a definition in the formalisation –
in each case a simple adaption of some already known term. Perhaps the only
step which seems unduly complicated is the definition of UA. This might be due
to the fact that the univalence axiom is a kind of artificial addition to Agda,
which is simply postulated and doesn’t come with many convenient definitional
equalities, forcing a bit of transport yoga.

In conclusion, we see that there is as close a correspondence between the informal
proof and the Agda formalisation as we could hope for. However, they differ in
which details we chose to leave to the reader/proof-checker. The human can be
trusted to see how to apply already known theorems in the relevant way, while
Agda excel at computing definitional equalities.

Selected excerps from HoTT-agda

The formalisation of our results depends on the HoTT-Agda library2 – mostly
for standard definitions of Homotopy Type Theory. In stead of quoting lengthy
files of code from the library, we include here the types of some of the terms we
use in our formalisation.

PathOver : ∀ {i j} {A : Type i} (B : A → Type j)
{x y : A} (p : x == y) (u : B x) (v : B y) → Type j

syntax PathOver B p u v =
u == v [B ↓ p]

ap : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y : A}
→ (x == y → f x == f y)

2The HoTT-Agda library is © 2013 Guillaume Brunerie, Evan Cavallo, Favonia, Nicolai
Kraus, Dan Licata, Christian Sattler

4

transport : ∀ {i j} {A : Type i} (B : A → Type j) {x y : A} (p : x == y)
→ (B x → B y)

Π : ∀ {i j} (A : Type i) (P : A → Type j) → Type (lmax i j)
Σ : ∀ {i j} (A : Type i) (B : A → Type j) → Type (lmax i j)

• : {x y z : A}
→ (x == y → y == z → x == z)

•' : {x y z : A}
→ (x == y → y == z → x == z)

•'=• : {x y z : A} (p : x == y) (q : y == z)
→ p •' q == p • q

•'-assoc : {x y z t : A} (p : x == y) (q : y == z) (r : z == t)
→ (p •' q) •' r == p •' (q •' r)

•-unit-r : {x y : A} (q : x == y) → q • idp == q

•'-unit-l : {x y : A} (q : x == y) → idp •' q == q

! : {x y : A} → (x == y → y == x)

!-inv-l : {x y : A} (p : x == y) → (! p) • p == idp
!-inv-r : {x y : A} (p : x == y) → p • (! p) == idp

•d : {x y z : A} {p : x == y} {p' : y == z}
{u : B x} {v : B y} {w : B z}

→ (u == v [B ↓ p]
→ v == w [B ↓ p']
→ u == w [B ↓ (p • p')])

5

	Prerequisites
	Assumptions of the formalisation
	Case study
	Selected excerps from HoTT-agda

