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Abstract

Going back to Gödel, we know that many formal languages have the
ability to represent its own syntax. The operation which turns an
expression into its internal representation is called quoting. For
programming languages, one can also ask if they can internally
represent their own evaluation function. Work by Brown and
Palsberg[0] show that this is even possible to some extent for
strongly normalising languages.

Quoting usually a meta-theoretical operation. However, some
programming languages, such as LISP or Scheme, have this as
internal operation in the language. In this talk I will present
extensions of λ-calculus and type theory with internal quoting
operations. They differ from the LIPS or Scheme equivalents by
being confluent while allowing reductions under the quote.
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Quoting in natural language
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Quoting in natural language

The password is long.

The password is “long”.
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Quoting in Scheme
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Quoting in Scheme: Example 0

> (' (lambda (x) x))
(lambda (x) x)
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Quoting in Scheme: Example 0

> (' (lambda (x) x))
(list 'lambda (list 'x) 'x)
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Quoting in Scheme: Example 1

Reductions cannot be de done under the quote:

> (' ((lambda (x) x) 'z)
(list ('lambda (list 'x) 'x) 3)

which is very different from the quote of 3, (which is the number 3
itself).
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Quoting in Scheme: Example 2

The following expression gives an error:

> (((lambda (y) (lambda (x) y)) (eval 'x)) 3)
Error: eval: unbound variable: x

but the following β-equivalent expression returns a value:

> ((lambda (x) (eval 'x)) 3)
3
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Quoting in Scheme: Example 2
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Representing λ-calculus in λ-calculus
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Church numerals

The church numeral c[n], represents the natural number n, by a
term in λ-calculus:

c[z] = λf x. x
c[s n] = λf x. f c[n]

This could be typed as: c[n] : Π x → (x → x) → (x → x).

Moral: Applying a Church numeral, corresponds to a kind of
recursor.
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Alternative representation of N in λ-calculus

From MLTT: Induction principle for N:

x:N ` P x type
` c0 : P z

x:N,y:P(x) ` c1 : P (s n)
−−−−−−−−−−−−−−−−−−−−−−−−−−−− N-ELIM

x : N ` elim-N P x c0 c1 : P x

Computation rules:

` elim-N P z c0 c1 ≡ c0
` elim-N P (s n) c0 c1 ≡ c1 n (elim-N P n c0 c1)

Håkon Robbestad Gylterud
Quoting operations as extensions of λ-calculus and type theory



Quoting in natural language Quoting in Scheme Representing λ-calculus in λ-calculus Extending λ-calculus with a quote operator Computation rules for the quote Quoting as an extension of MLTT

Alternative representation of N in λ-calculus

Given a natural number n we can define an alternative
representation r[n], inspired by the elimination rule for N:

r[z] = λ c0 c1. c0
r[s n] = λ c0 c1. c1 (r[n]) (r[n] c0 c1)
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Representing λ-calculus in type theory

data Λ (X : Set) : Set where
var : X → Λ X
l : Λ (X + 1) → Λ X
app : Λ X → Λ X → Λ X

Which inspires the following the representation of λ-calculus in
λ-calculus:

var = λx cv cl ca. cv x
l = λt cv cl ca. cl t (t cv cl ca)
app = λt u cv cl ca. ca t u (t cv cl ca) (u cv cl ca)
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Extending λ-calculus with a quote operator
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Quoting as a binder

Extend the syntax of λ-calculus with a new binder:

t term X list of distinct variables
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
X’t term

FV (X’t) = FV t \ X

Håkon Robbestad Gylterud
Quoting operations as extensions of λ-calculus and type theory



Quoting in natural language Quoting in Scheme Representing λ-calculus in λ-calculus Extending λ-calculus with a quote operator Computation rules for the quote Quoting as an extension of MLTT

Examples

[x]’x
[]’x
λx.[]’x
[]’(λx.x)
[x]’(x y)
[y]’(x y)
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Representing λ’-calculus in type theory

data Λ (X : Set) : Set where
var : X → Λ X
l : Λ (X + 1) → Λ X
app : Λ X → Λ X → Λ X
_’_ : (n : N) → Λ (X + Fin n) → Λ X

Using this representation, we can for instance implement a
substitution operation subst : Λ(X+1) → Λ(X) → Λ(X)
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Rewriting under quotes

We want to be able to rewrite under the quote – i.e.:

t  u ⇒ X’t  X’u
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Computation rules for the quote
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Computation rules for the quote: λ

The case for λ-abstraction:

X’(λy.t)  (l (X.y ’ t))

. . . assuming x is not in X.
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Computation rules for the quote: variables

X’(Xi)  (var (r[i]))

Example: [x,y]’y  var (r[s z]).
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Computation rules for the quote: Application

It would be tempting to have:

X’(t u)  (app (X’t) (X’u))

But, that would break confluence when rewriting under quotes.
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Computation rules for the quote: Application

However, this is safe:

X’(x u)  (app (X’x) (X’u))

when x ≡ X i for some i.
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Computation rules for the quote: Application

In fact, we can have

X’(t u)  (app (X’t) (X’u))

whenever the head of t is a variable in X.
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Computation rules for the quote: Quote

Finally, we need rules for quoting quotes: needing first a
representation of the quote constructor in λ-calculus:

var = λx cv cl ca cq. cv x
l = λt cv cl ca cq. cl t (t cv cl ca cq)
app = λt u cv cl ca cq. ca t u (t cv cl ca cq) (u cv cl ca cq)
quote = λ n t cv cl ca cq. cq n t (t cv cl ca cq)
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Computation rules for the quote: Quote

Again, we cannot always have:

X’(Y’u)  quote (r[‖Y‖]) (X.Y’u)

But must require that the head of u is a variable in X, and X and Y
must be disjoint.
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Example computations

[x]’x  (var (r[0]))
[]’x is normal (x is free).
λx.[]’x is normal.
[]’(λx.x)  (l (var (r[0])))
[x]’(x y)  (app (var (r[0])) y)
[y]’(x y) is normal.
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Observation

If t is normal and FV(t) are all in X, then X’t reduces to a ’-free
term.

Proof-sketch: By induction on t: we have given rules reducing
X’t for each head normal form t could have. Each computation
rule applies ’ only to subterms of t.
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Example

Some quoted terms do not normalise:

Z = [f]’((λx. f (x x)) (λx. f (x x))) has the property
that

Z  (app (var (r[0])) Z).
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Quoting as an extension of MLTT
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Consistency of type theory

Consistency of MLTT can be proven from:

Canonicity: Every normal ` a : A is canonical.
Normalisation: Every term can be reduced to a normal form.
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Extending type theory with new constants

Given a function φ : N → N in the meta-theory, how can we
extend type theory with it?
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Extending type theory with new constants

Adding a constant ` cφ : N → N breaks canonicity.

But adding a constant x : N ` cφ(x) : N does not. . .

if we also add (for each n : N in the meta theory) a computation
rule:

cφ(N[n]) ≡ N[φ n]

where N[n]=snz is the numeral representation of n in type theory.
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Extending type theory with new constants

How much does type theory know about the new constant cφ?

Not very much: If φ is, say, monotone, type theory does not
know it.

But we can add:

x:N,y:N , p : x ≤ y ` monφ p : cφ(x) ≤ cφ(y)

And computation rules, which computes monφ (Nn)(Nm).
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Choices

Quoting could be done in several ways:

1 Quoting into an internal representation of type theory syntax
(with quoting extensions).

2 Quoting into λ’-calculus

This approach falls into 2.
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The typed quoting binder

Γ·∆ ` a : A
−−−−−−−−−−−−−−− QUOTE
Γ ` Q(∆)a : Λ(Fin ‖∆‖)
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Examples

` Q(x:N)x : Λ (0+1)
x:N ` Q()x : Λ 0
` (λ(x:A) → Q()x) : A → Λ 0
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Computation rules

We add computation rules for Q similar to those we had in the
λ’-calculus. As an example, here are the computations rules for
quoting natural numbers:

Q(∆)z ≡ l l v+
Q(∆)(s t)
≡ l l (app (app v (Q(∆)t) (app (app (Q(∆)t) v) v+))

Q(∆)(elim-N P u c0 c1)
≡ app (app (Q(∆)u) (Q(∆)c0)) (Q(∆,x:N,y:P(x))c1)

The quote rule for the eliminator applies only whenever the head of
u is in ∆.

Here v and v+ are deBruĳn-indices.
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Church’s thesis in type theory

Given an internal definition of r[-] : N → Λ 0, we propose the
following alternative internalisation of church thesis.

∏
(f : N → N)

∑
(q : Λ (0+1))

∏
(n:N)

(subst q (r[n]))  r[f n]

(Where subst : Λ(X+1) → Λ(X) → Λ(X) is the internally
defined substitution of λ’-terms)

The quote operation provides a candidate q, given f : N → N
namely Q(x:N)(f x).

Further extensions needed to show the rest of the statement.
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Substitution rule

Here is such a further substitution rule:

∆,x:A ` t(x) : B(x) ∆ ` a:A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Q-SUBST
subst (Q(∆,x:A)t(x)) (Q(∆)a)  Q(∆)t(a)

Where t(a) denotes the substitution of x with a on the type theory
level, and subst is the internally defined
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Church thesis from Q-SUBST (proof sketch)

By induction one can show that r[n] = Q()n.

So given f : N → N, we let q := Q(x:N)(f x), and must
prove (subst q (r[n]))  r[f n]:

subst q (r[n]) = subst q (Q()n)`
≡ subst (Q(x:N)(f x)) (Q()n)
 Q()(f n)
= r[f n]

The reduction step uses Q-SUBST.
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Current status

Definition of λ’-calculus and substitution formalised in Agda.
Still many proofs to formalise (confluence, normalisation)
An interpreter implemented in Haskell (and a small
programming language based on the calculus).
Ongoing: Giving the computation rules for Q-SUBST and
proving normalisation and canonicity for these.

Håkon Robbestad Gylterud
Quoting operations as extensions of λ-calculus and type theory


	Quoting in natural language
	Quoting in Scheme
	Representing -calculus in -calculus
	Extending -calculus with a quote operator
	Computation rules for the quote
	Quoting as an extension of MLTT

