Quotes in λ-calculus and type theroy

Håkon Robbestad Gylterud

Stockholm 2019

Introduction

Håkon Robbestad Gylterud

Quotes in λ-calculus and type theroy

Quoting in natural language

The password is long. The password is "long".

Church's Thesis

"Every function is computable."
■ Which notion of computable?
■ Which functions?

Church's Thesis

"For every function $\mathbb{N} \rightarrow \mathbb{N}$ there is a Kleene-index computing the function"

Church's Thesis

"For every function $\mathbb{N} \rightarrow \mathbb{N}$ there is a term in λ-calculus computing the function"

■ Which encoding?
■ What quantifiers?

Church's Thesis

$$
\begin{equation*}
\prod_{f: \mathbb{N} \rightarrow \mathbb{N}} \sum_{q: N^{\prime}(\perp+T)} \prod_{n: \mathbb{N}} q[r n] \rightsquigarrow r(f n) \tag{1}
\end{equation*}
$$

- $\Lambda^{\prime}(\perp+T)$ is the type of terms of the λ^{\prime}-calculus with one free variable.
■ Square brackets are substitution of λ^{\prime}-terms.
$\square r: \mathbb{N} \rightarrow \Lambda^{\prime} \perp$ encodes the numerals as closed λ^{\prime}-terms.
■ _ $n_{-}: \Lambda^{\prime} \mathrm{X} \rightarrow \Lambda^{\prime} \mathrm{X} \rightarrow$ Set denotes reduction relation on λ^{\prime}-terms.

The setting of this talk

We will consider "type theory" in this talk to mean dependent type theory with

■ П-types

- And a limited collections of inductive types:
$\Sigma,+, \perp, \top, I d, \mathbb{N}$, Fin $, \Lambda, \Lambda^{\prime}, \rightsquigarrow$
■ No η-rules, but we have the ξ-rule (conversion under λ-abstractions)
■ No unverses (yet).

Representing (untyped) binding operations in type theory

Binding operations

Ways to express variables and substitution:

- Strings
- De Bruijn indices

■ Explicit substitutions
■ Combinators
The following representation is due to Bird and Paterson.

Type based de Bruijn indices

```
data ^(X : Set) : Set where
    var : X }->\mathrm{ \ X
    л : ^ (X + T) -> ^ X
    app : ^ X }->\mathrm{ \ X }->\mathrm{ \ X
```

Examples:
■ л (var (right *))
■ л (var (left *))
■ л (л (var (left (right *))))
The translation to de Bruijn indices is simply that right * corresponds to the index 0 and left x is $\mathrm{x}+1$.

Type based de Bruijn indices

```
data ^(X : Set) : Set where
    var : X }->\mathrm{ \ X
    л : ^(X + T) }->\mathrm{ \ X
    app : \X X \ X X \ X
```

Using this representation it is easy to:
■ see that Λ is a monad, with substitution as the Kleisli composition.
■ define the reduction relation _ $\varlimsup_{_}: \Lambda \mathrm{X} \rightarrow \Lambda \mathrm{X} \rightarrow$ Set.

λ '-calculus

Håkon Robbestad Gylterud

Quotes in λ-calculus and type theroy

λ^{\prime} calculus

λ^{\prime}-calculus extends λ-calculus with a new binder:

```
data \(\Lambda^{\prime}(\mathrm{X}:\) Set) : Set where
    var : \(\mathrm{X} \rightarrow \Lambda^{\prime} \mathrm{X}\)
    л : \(\Lambda^{\prime}(\mathrm{X}+\mathrm{T}) \rightarrow \Lambda^{\prime} \mathrm{X}\)
    app : \(\Lambda^{\prime} \mathrm{X} \rightarrow\) ^' \(^{\prime} \mathrm{X} \rightarrow \Lambda^{\prime} \mathrm{X}\)
    _'_: ( \(\mathrm{n}: \mathbb{N}\) ) \(\rightarrow \Lambda(\mathrm{X}+\mathrm{Fin} \mathrm{n}) \rightarrow \Lambda \mathrm{X}\)
```


Examples

$$
\begin{aligned}
& \text { - [x] ' } x \\
& \text { - []'x } \\
& \text { - } \lambda \mathrm{x} .\left[\mathrm{]}{ }^{\prime} \mathrm{x}\right. \\
& \text { ■ []' (} \lambda \mathrm{x} . \mathrm{x} \text {) } \\
& \text { ■ [x y]'(x y) }
\end{aligned}
$$

Examples

■ [x]'x, or 1 ' (var (right *))
■ []'x, or 0 ' (var (left *))
■ $\lambda \mathrm{x} .[\mathrm{]} \mathrm{x}$, or л (0 , ($\operatorname{var}(\operatorname{left}($ right *))))
■ []' $(\lambda \mathrm{x} \cdot \mathrm{x})$, or 0 , (л (var (right *)))
■ [x y]' (x y), or 2 ' (app (var (right *)) ())

Quoting terms in λ-calculus

Detour: Church numerals

■ ZERO := $\lambda \mathrm{fx} . \mathrm{x}$
■ SUCC $:=\lambda n . \lambda \mathrm{fx} . \mathrm{f}(\mathrm{nx})$
This can be used to build a function $\mathrm{c}: \mathbb{N} \rightarrow \Lambda \perp$ in type theory.

Detour: Church numerals

■ ZERO := $\lambda \mathrm{fx}$.x
■ SUCC $:=\lambda \mathrm{n} . \lambda_{\mathrm{fx}} \mathrm{f}(\mathrm{nx})$
This can be used to build a function c : $\mathbb{N} \rightarrow \Lambda \perp$ in type theory. Observe:

■ Every Church numeral can be typed: $(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow(\mathrm{X} \rightarrow \mathrm{X})$
$■$ In fact these are all such functions (assuming paramatricity).
■ The function iterate $: \mathbb{N} \rightarrow(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow(\mathrm{X} \rightarrow \mathrm{X})$ is an instance of the elimination principle for \mathbb{N} in type theory.

Detour: Alternative representation of \mathbb{N} in λ-calculus

From Martin-Löf type theory: Induction principle for \mathbb{N} :

$$
\begin{array}{ll}
\mathrm{x}: \mathbb{N} & \vdash \mathrm{P} \text { x type } \\
& \vdash \mathrm{c}_{0}: \mathrm{P} \mathrm{z} \\
\mathrm{x}: \mathbb{N}, \mathrm{y}: \mathrm{P}(\mathrm{x}) & \vdash \mathrm{c}_{1}: \mathrm{P}(\mathrm{~s} \mathrm{n})
\end{array}
$$

$$
\longrightarrow \mathbb{N} \text {-ELIM }
$$

$$
\mathrm{x}: \mathbb{N} \vdash \mathrm{elim}-\mathbb{N} \mathrm{P} \mathrm{x} \mathrm{c}_{0} \mathrm{c}_{1}: \mathrm{P} \mathrm{x}
$$

Computation rules:

$$
\begin{aligned}
& \vdash \operatorname{elim}-\mathbb{N} P \text { z } \quad \mathrm{c}_{0} \mathrm{c}_{1} \equiv \mathrm{c}_{0} \\
& \vdash \operatorname{elim}-\mathbb{N} P(\mathrm{~s} \mathrm{n}) \mathrm{c}_{0} \mathrm{c}_{1} \equiv \mathrm{c}_{1} \mathrm{n}\left(\text { elim- } \mathbb{N} \text { P n } \mathrm{c}_{0} \mathrm{c}_{1}\right)
\end{aligned}
$$

Alternative representation of \mathbb{N} in λ-calculus

This inspires the following:
■ ZERO $:=\lambda c_{0} c_{1}$. c_{0}
$■$ SUCC $:=\lambda n \cdot \lambda c_{0} c_{1} \cdot c_{1} n\left(n c_{0} c_{1}\right)$
Which gets the computation rules by β-reduction:

- ZERO $c_{0} c_{1} \rightsquigarrow c_{0}$
- (SUCC n) $\mathrm{c}_{0} \mathrm{c}_{1} \rightsquigarrow \mathrm{c}_{1} \mathrm{n}\left(\mathrm{n} \mathrm{c}_{0} \mathrm{c}_{1}\right)$

This way of encoding extends to many inductive types.

Representing λ-calculus in λ-calculus

```
data ^ (X : Set) : Set where
    var : X }->\mathrm{ \ X
    л : ^ (X + T) }->\mathrm{ \ X
    app : ^ X }->\mathrm{ \ X }->\mathrm{ \ X
```

Which inspires the following the representation of λ-calculus in λ-calculus:

```
VAR = \lambdax. v l a. v x
LAM = \lambdat. v l a. l t (t v l a)
APP = \lambdat u.v l a. a t u (t v l a) (u v l a)
```


Representing λ^{\prime}-calculus in $\lambda(')$-calculus

The definition we had of terms in Λ^{\prime} gives a similar representation data $\Lambda^{\prime}(\mathrm{X}:$ Set) : Set where
var : $\mathrm{X} \rightarrow \Lambda^{\prime} \mathrm{X}$
л : $\Lambda^{\prime}(\mathrm{X}+\mathrm{T}) \rightarrow \Lambda^{\prime} \mathrm{X}$
app : $\Lambda^{\prime} \mathrm{X} \rightarrow$ ^' $^{\prime} \mathrm{X} \rightarrow \Lambda^{\prime} \mathrm{X}$
_ _ : $(\mathrm{n}: \mathbb{N}) \rightarrow \Lambda(\mathrm{X}+\mathrm{Fin} \mathrm{n}) \rightarrow \Lambda \mathrm{X}$
$\operatorname{VAR}:=\lambda \mathrm{x} . \quad \mathrm{v}$ l a q. v x
LAM $:=\lambda t . \quad v 1$ a q. 1 t (t v l a q$)$
APP $:=\lambda t u . v 1$ a q. a $t u(t v l a q)(u v 1 a q)$
QUOTE $:=\lambda \mathrm{n} \mathrm{t} . \mathrm{v} \mathrm{l}$ a $\mathrm{q} . \mathrm{q} \mathrm{n} \mathrm{t}$ (t v l a q$)$
Notice: No quotes are used to represent terms.

The reduction relation in λ^{\prime}-calculus: variable-quoting

A quote will only be encoding variables which it has bound:
n ' (var (right x)) $\rightsquigarrow \operatorname{VAR}(\mathrm{r} x)$
Example: We have $[x]$ ' $x \rightsquigarrow$ VAR ZERO but []'x does not reduce.

The reduction relation in λ^{\prime}-calculus: λ-quoting

Informally, we want, whenever x does not occur in v:
v , ($\lambda \mathrm{x} . \mathrm{t}$) \rightsquigarrow LAM ($\mathrm{x} \cdot \mathrm{v}$, t)
Formally, we need to do some variable yoga:
associate $: \Lambda((X+F i n n)+T) \rightarrow \Lambda(X+F i n($ succ $n))$
And we get:

$$
\mathrm{n} \text {, (л t) } \rightsquigarrow \operatorname{app} \operatorname{LAM}((\operatorname{succ} \mathrm{n}) \text {, associate f) }
$$

Example

[]' ($\lambda \mathrm{x} . \mathrm{x}$) \rightsquigarrow LAM ($[\mathrm{x}]$, x) \rightsquigarrow LAM (VAR ZERO)

The reduction relation in λ^{\prime}-calculus: app-quoting

A trap!

It would be tempting to have:
v ' ($\mathrm{t} u$) \rightsquigarrow APP ($\mathrm{v}^{\prime} \mathrm{t}$) ($\mathrm{v}^{\prime} \mathrm{u}$)

The reduction relation in λ^{\prime}-calculus: app-quoting

A trap!

It would be tempting to have:
v ' (t u) \rightsquigarrow APP (v't) (v'u)
But, that would break confluence when rewriting under quotes:
We would have both:
[y]' (($\lambda \mathrm{x} . \mathrm{x}) \mathrm{y}) \rightsquigarrow$ APP (LAM (VAR ZERO)) (VAR ZERO)
...and. .
[y]' (($\lambda \mathrm{x} . \mathrm{x}) \mathrm{y}) \rightsquigarrow[\mathrm{y}]$ 'y \rightsquigarrow VAR ZERO

The reduction relation in λ^{\prime}-calculus: app-quoting

However, this is safe, whenever the head of t is a variable in v :
v ' (t u) $\rightsquigarrow \operatorname{APP}$ (v't) (v'u)

The reduction relation in λ^{\prime}-calculus: app-quoting

However, this is safe, whenever the head of t is a variable in v :
$v^{\prime}(t \quad u) \rightsquigarrow \operatorname{APP}\left(v^{\prime} t\right)(v ' u)$
Formally: When head $\mathrm{t}=$ right k for some k : Fin n , we have
n ' (app t u) $\rightsquigarrow \operatorname{APP}$ (n't) (n'u)

The reduction relation in λ^{\prime}-calculus: '-quoting

Finally, we must also be careful when quoting quotes:

Properties of the λ^{\prime}-calculus

1 Confluence: Rules were carefully chosen for this.
2 Canonicity: For any normal term $\mathrm{t}: \Lambda(\perp+\mathrm{Fin}(\mathrm{n}))$ the closed term n , $\mathrm{t}: \Lambda \perp$ reduces to a normal (quote-free) λ-term.

Properties of the λ^{\prime}-calculus

1 Confluence: Rules were carefully chosen for this.
2 Canonicity: For any normal term $\mathrm{t}: \Lambda(\perp+\mathrm{Fin}(\mathrm{n}))$ the closed term n , $\mathrm{t}: \Lambda \perp$ reduces to a normal (quote-free) λ-term.

Proof-sketch of 2: By induction on t : we have given rules reducing X't for each head normal form t could have. Each computation rule applies ' only to subterms of t.

Example

Some quoted terms do not normalise:
$\mathrm{Z}=[\mathrm{f}]$ ' $((\lambda \mathrm{x} . \mathrm{f}(\mathrm{x} \mathrm{x}))(\lambda \mathrm{x} . \mathrm{f}(\mathrm{x} \mathrm{x})))$ has the property that

Z \rightsquigarrow (APP (VAR ZERO) Z).

Quoting as an extension of type theory

Representing terms of type theory in λ-calculus

- For \mathbb{N} we got an encoding in λ-calculus by looking at \mathbb{N}-elimination.
■ Similarly, we can encode our other inductive types:
- PAIR $=\lambda \mathrm{a}$ b. $\lambda \mathrm{p} . \mathrm{p} \mathrm{a} \mathrm{b}$ for \sum-types.

■ REFL $=\lambda \mathrm{x} . \lambda \mathrm{p} . \mathrm{p} \times$ for Id-types etc
■ λ-abstraction will represented by λ-abstraction.

Consistency of type theory

Consistency of type theory can be proven from:

- Canonicity: If \vdash a : A then a is canonical.

■ Normalisation: Every term can be reduced to a normal form.

Extending type theory with new constants

Given a function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ in the meta-theory, how do we extend type theory with it?

Extending type theory with new constants

Given a function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ in the meta-theory, how do we extend type theory with it?

■ Adding a new constant f, and a rule giving $\vdash \mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$ breaks canonicity.

Extending type theory with new constants

Given a function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ in the meta-theory, how do we extend type theory with it?

■ Adding a new constant f, and a rule giving $\vdash \mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$ breaks canonicity.

But adding a new constant $\mathrm{x}: \mathbb{N} \vdash \mathrm{f}(\mathrm{x}): \mathbb{N}$ does not, if...

Extending type theory with new constants

Given a function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ in the meta-theory, how do we extend type theory with it?

■ Adding a new constant f, and a rule giving $\vdash \mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$ breaks canonicity.

But adding a new constant $\mathrm{x}: \mathbb{N} \vdash \mathrm{f}(\mathrm{x}): \mathbb{N}$ does not, if...
we also add (for each $\mathrm{n}: \mathbb{N}$ in the meta theory) a computation rule:
$\mathrm{cf}(\mathrm{N}[\mathrm{n}]) \equiv \mathrm{N}[\phi \mathrm{n}]$
where $N[n]=s^{n} z$ is the numeral representation of n in type theory.

Extending type theory with new constants

How much does type theory know about the new constant f ?

Extending type theory with new constants

How much does type theory know about the new constant f ?
■ Not very much: If ϕ is, say, monotone, the new type theory does not deduce $\mathrm{x}: \mathbb{N}, \mathrm{y}: \mathbb{N}, \mathrm{p}: \mathrm{x} \leq \mathrm{y} \vdash \mathrm{f}(\mathrm{x}) \leq \mathrm{f}(\mathrm{y})$.

Extending type theory with new constants

How much does type theory know about the new constant f ?
■ Not very much: If ϕ is, say, monotone, the new type theory does not deduce $\mathrm{x}: \mathbb{N}, \mathrm{y}: \mathbb{N}, \mathrm{p}: \mathrm{x} \leq \mathrm{y} \vdash \mathrm{f}(\mathrm{x}) \leq \mathrm{f}(\mathrm{y})$.

But we can add:

$$
x: \mathbb{N}, \mathrm{y}: \mathbb{N}, \mathrm{p}: \mathrm{x} \leq \mathrm{y} \vdash \operatorname{monf} \mathrm{x} y \mathrm{p}: f(\mathrm{x}) \leq \mathrm{f}(\mathrm{y})
$$

And computation rules, which computes monf $\mathrm{N}[\mathrm{n}] \mathrm{N}[\mathrm{m}] \mathrm{p}$ to a witness for every n and m (from our meta-theory).

Choices

Quoting could be done in several ways:
1 Quoting into an internal representation of type theory syntax (with quoting extensions).
2 Quoting into λ^{\prime}-calculus
This approach falls into 2 .

The typed quoting binder

We first extend our type theory with the rule:

$$
\Gamma \cdot \Delta \vdash \mathrm{a}: \mathrm{A}
$$

QUOTE
$\Gamma \vdash \mathrm{Q}(\Delta) \mathrm{a}: \Lambda($ Fin $\|\Delta\|)$

Examples

$$
\begin{aligned}
& ■ \vdash \mathrm{Q}(\mathrm{x}: \mathbb{N}) \mathrm{x}: \wedge(\perp+1) \\
& ■ \mathrm{x}: \mathbb{N} \vdash \mathrm{Q}() \mathrm{x}: \Lambda 0 \\
& ■(\lambda(\mathrm{x}: \mathrm{A}) \rightarrow \mathrm{Q}() \mathrm{x}): \mathrm{A} \rightarrow \Lambda \perp
\end{aligned}
$$

Computation rules

Now, using the representation we discussed, we add rules to compute Q-abstractions:

This is straight forward for canonical terms:
$Q(\Delta)$ (zero) \equiv zero
$\mathrm{Q}(\Delta)(\operatorname{succ} \mathrm{n}) \equiv \operatorname{app} \operatorname{SUCC}(\mathrm{Q}(\Delta) \mathrm{n})$
$\mathrm{Q}(\Delta)(\lambda(\mathrm{x}: \mathrm{A}) \mathrm{t}) \equiv$ л $(\mathrm{Q}(\Delta, \mathrm{x}: \mathrm{A}) \mathrm{t})$
($\cdot \cdot$)

Computation rules

But for eliminators we must make sure that the head of the principle argument is a variable bound by the quote:
$Q(\Delta)\left(\operatorname{elim}-\mathbb{N} P \mathrm{n} \mathrm{c}_{0} \mathrm{c}_{1}\right)$
$\equiv \operatorname{app}(\mathrm{Q}(\Delta) \mathrm{n})\left(\mathrm{Q}(\Delta) \mathrm{c}_{0}\right)\left(\mathrm{Q}(\Delta, \mathrm{x}: \mathbb{N}, \mathrm{p}: \mathrm{P}(\mathrm{x})) \mathrm{c}_{1}\right)$
is only added when the head of n is a variable in Δ.

Computation rules

But for eliminators we must make sure that the head of the principle argument is a variable bound by the quote:
$Q(\Delta)\left(\operatorname{elim}-\mathbb{N} P \mathrm{n} \mathrm{c}_{0} \mathrm{c}_{1}\right)$

$$
\equiv \operatorname{app}(\mathrm{Q}(\Delta) \mathrm{n})\left(\mathrm{Q}(\Delta) \mathrm{c}_{0}\right)\left(\mathrm{Q}(\Delta, \mathrm{x}: \mathbb{N}, \mathrm{p}: \mathrm{P}(\mathrm{x})) \mathrm{c}_{1}\right)
$$

is only added when the head of n is a variable in Δ.
Once we have added rules for each term former, it is straight-forward to show that if $\vdash \mathrm{a}$: A and a is normal in the extended theory it reduces to a term of canonical form.

Church's Thesis

$$
\begin{equation*}
\prod_{f: \mathbb{N} \rightarrow \mathbb{N}} \sum_{q: N^{\prime}(\perp+T)} \prod_{n: \mathbb{N}} q[r n] \rightsquigarrow r(f n) \tag{2}
\end{equation*}
$$

The quote operation provides a candidate q, given $f: \mathbb{N} \rightarrow \mathbb{N}$ namely $Q(x: \mathbb{N})(f \quad x)$.

■ Further extensions needed to show the rest of the statement.

Substitution rule

Here is such a further substitution rule:
$\Delta, \mathrm{x}: \mathrm{A} \vdash \mathrm{t}(\mathrm{x}): \mathrm{B}(\mathrm{x}) \quad \Delta \vdash \mathrm{a}: \mathrm{A}$
$(\mathrm{Q}(\Delta, \mathrm{x}: \mathrm{A}) \mathrm{t}(\mathrm{x}))[\mathrm{Q}(\Delta) \mathrm{a}] \rightsquigarrow \mathrm{Q}(\Delta) \mathrm{t}(\mathrm{a})$

Church thesis from Q-SUBST (proof sketch)

By induction one can show that $\mathrm{r} \mathrm{n}=\mathrm{Q}() \mathrm{n}$.
So given $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$, we let $\mathrm{q}:=\mathrm{Q}(\mathrm{x}: \mathbb{N})(\mathrm{f} x)$, and must prove q [r n] $\rightsquigarrow r(f n)$:
$\mathrm{q}[\mathrm{rn} \mathrm{n}]=\mathrm{q}[\mathrm{Q}(\mathrm{n}]$
$\equiv \mathrm{Q}(\mathrm{x}: \mathbb{N})(\mathrm{f} x)[\mathrm{Q}(\mathrm{n}]$
$\rightsquigarrow Q()(f n)$
$=r(f n)$
The reduction step uses Q-SUBST.

Current status

■ Definition of λ^{\prime}-calculus and substitution formalised in Agda.

- Still many proofs to formalise (confluence, normalisation)

■ An interpreter implemented in Haskell (and a small programming language based on the calculus).

- Ongoing: Giving the computation rules for Q-SUBST and proving normalisation and canonicity for these.

