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Introduction
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Quoting in natural language

The password is long.
The password is “long”.
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Church’s Thesis

“Every function is computable.”

Which notion of computable?
Which functions?
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Church’s Thesis

“For every function N→ N there is a Kleene-index computing the
function”
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Church’s Thesis

“For every function N→ N there is a term in λ-calculus computing
the function”

Which encoding?
What quantifiers?
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Church’s Thesis

∏
f :N→N

∑
q:Λ′(⊥+>)

∏
n:N

q[r n] r (f n) (1)

Λ′(⊥+>) is the type of terms of the λ’-calculus with one free
variable.
Square brackets are substitution of λ’-terms.
r : N→ Λ′⊥ encodes the numerals as closed λ’-terms.
_ _ : Λ’ X → Λ’ X → Set denotes reduction relation on
λ’-terms.

Håkon Robbestad Gylterud
Quotes in λ-calculus and type theroy



The setting of this talk

We will consider “type theory” in this talk to mean dependent type
theory with

Π-types
And a limited collections of inductive types:
Σ,+,⊥,>,Id,N,Fin,Λ,Λ’, 
No η-rules, but we have the ξ-rule (conversion under
λ-abstractions)
No unverses (yet).
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Representing (untyped) binding operations in
type theory
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Binding operations

Ways to express variables and substitution:

Strings
De Bruĳn indices
Explicit substitutions
Combinators

The following representation is due to Bird and Paterson.
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Type based de Bruĳn indices

data Λ (X : Set) : Set where
var : X → Λ X
l : Λ (X + T) → Λ X
app : Λ X → Λ X → Λ X

Examples:

l (var (right ∗))
l (var (left ∗))
l (l (var (left (right ∗))))

The translation to de Bruĳn indices is simply that right ∗
corresponds to the index 0 and left x is x + 1.
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Type based de Bruĳn indices

data Λ (X : Set) : Set where
var : X → Λ X
l : Λ (X + T) → Λ X
app : Λ X → Λ X → Λ X

Using this representation it is easy to:

see that Λ is a monad, with substitution as the Kleisli
composition.
define the reduction relation _ _ : Λ X → Λ X → Set.
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λ’-calculus
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λ’ calculus

λ’-calculus extends λ-calculus with a new binder:

data Λ’ (X : Set) : Set where
var : X → Λ’ X
l : Λ’ (X + T) → Λ’ X
app : Λ’ X → Λ’ X → Λ’ X
_’_ : (n : N) → Λ (X + Fin n) → Λ X
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Examples

[x]’x
[]’x
λx.[]’x
[]’(λx.x)
[x y]’(x y)
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Examples

[x]’x, or 1 ’ (var (right ∗))
[]’x, or 0 ’ (var (left ∗))
λx.[]’x, or l (0 ’ (var (left (right ∗))))
[]’(λx.x), or 0 ’ (l (var (right ∗)))
[x y]’(x y), or 2 ’ (app (var (right ∗)) ())
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Quoting terms in λ-calculus
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Detour: Church numerals

ZERO := λfx.x
SUCC := λn.λfx.f(nx)

This can be used to build a function c : N → Λ ⊥ in type theory.

Observe:

Every Church numeral can be typed: (X → X) → (X → X)
In fact these are all such functions (assuming paramatricity).
The function iterate : N → (X → X) → (X → X) is
an instance of the elimination principle for N in type theory.
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Detour: Alternative representation of N in λ-calculus

From Martin-Löf type theory: Induction principle for N:

x:N ` P x type
` c0 : P z

x:N,y:P(x) ` c1 : P (s n)
−−−−−−−−−−−−−−−−−−−−−−−−−−−− N-ELIM

x : N ` elim-N P x c0 c1 : P x

Computation rules:

` elim-N P z c0 c1 ≡ c0
` elim-N P (s n) c0 c1 ≡ c1 n (elim-N P n c0 c1)
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Alternative representation of N in λ-calculus

This inspires the following:

ZERO := λc0c1. c0
SUCC := λn.λc0c1. c1 n (n c0 c1)

Which gets the computation rules by β-reduction:

ZERO c0 c1  c0
(SUCC n) c0 c1  c1 n (n c0 c1)

This way of encoding extends to many inductive types.
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Representing λ-calculus in λ-calculus

data Λ (X : Set) : Set where
var : X → Λ X
l : Λ (X + >) → Λ X
app : Λ X → Λ X → Λ X

Which inspires the following the representation of λ-calculus in
λ-calculus:

VAR = λx. v l a. v x
LAM = λt. v l a. l t (t v l a)
APP = λt u.v l a. a t u (t v l a) (u v l a)
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Representing λ’-calculus in λ(’)-calculus

The definition we had of terms in Λ’ gives a similar representation

data Λ’ (X : Set) : Set where
var : X → Λ’ X
l : Λ’ (X + T) → Λ’ X
app : Λ’ X → Λ’ X → Λ’ X
_’_ : (n : N) → Λ (X + Fin n) → Λ X

VAR := λx. v l a q. v x
LAM := λt. v l a q. l t (t v l a q)
APP := λt u. v l a q. a t u (t v l a q) (u v l a q)
QUOTE := λ n t. v l a q. q n t (t v l a q)

Notice: No quotes are used to represent terms.

Håkon Robbestad Gylterud
Quotes in λ-calculus and type theroy



The reduction relation in λ’-calculus: variable-quoting

A quote will only be encoding variables which it has bound:

n ’ (var (right x))  VAR (r x)

Example: We have [x]’x  VAR ZERO but []’x does not reduce.
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The reduction relation in λ’-calculus: λ-quoting

Informally, we want, whenever x does not occur in v:

v ’ (λx.t)  LAM (x·v ’ t)

Formally, we need to do some variable yoga:

associate : Λ ((X + Fin n) + >) → Λ (X + Fin (succ n))

And we get:

n ’ (l t)  app LAM ((succ n) ’ associate f)

Håkon Robbestad Gylterud
Quotes in λ-calculus and type theroy



Example

[]’(λx.x)  LAM ([x] ’ x)
 LAM (VAR ZERO)
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The reduction relation in λ’-calculus: app-quoting

A trap!
It would be tempting to have:
v ’ (t u)  APP (v’t) (v’u)

But, that would break confluence when rewriting under quotes:
We would have both:
[y]’((λx.x)y)  APP (LAM (VAR ZERO)) (VAR ZERO)
. . . and. . .
[y]’((λx.x)y)  [y]’y  VAR ZERO
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The reduction relation in λ’-calculus: app-quoting

However, this is safe, whenever the head of t is a variable in v:

v ’ (t u)  APP (v’t) (v’u)

Formally: When head t = right k for some k : Fin n, we have

n ’ (app t u)  APP (n’t) (n’u)
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The reduction relation in λ’-calculus: ’-quoting

Finally, we must also be careful when quoting quotes:
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Properties of the λ’-calculus

1 Confluence: Rules were carefully chosen for this.
2 Canonicity: For any normal term t : Λ(⊥+Fin(n)) the

closed term n ’ t : Λ ⊥ reduces to a normal (quote-free)
λ-term.

Proof-sketch of 2: By induction on t: we have given rules
reducing X’t for each head normal form t could have. Each
computation rule applies ’ only to subterms of t.

Håkon Robbestad Gylterud
Quotes in λ-calculus and type theroy



Properties of the λ’-calculus

1 Confluence: Rules were carefully chosen for this.
2 Canonicity: For any normal term t : Λ(⊥+Fin(n)) the

closed term n ’ t : Λ ⊥ reduces to a normal (quote-free)
λ-term.

Proof-sketch of 2: By induction on t: we have given rules
reducing X’t for each head normal form t could have. Each
computation rule applies ’ only to subterms of t.

Håkon Robbestad Gylterud
Quotes in λ-calculus and type theroy



Example

Some quoted terms do not normalise:

Z = [f]’((λx. f (x x)) (λx. f (x x))) has the property
that

Z  (APP (VAR ZERO) Z).
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Quoting as an extension of type theory
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Representing terms of type theory in λ-calculus

For N we got an encoding in λ-calculus by looking at
N-elimination.
Similarly, we can encode our other inductive types:

PAIR = λa b.λp. p a b for Σ-types.
REFL = λx.λp.p x for Id-types etc

λ-abstraction will represented by λ-abstraction.
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Consistency of type theory

Consistency of type theory can be proven from:

Canonicity: If ` a : A then a is canonical.
Normalisation: Every term can be reduced to a normal form.
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Extending type theory with new constants

Given a function φ : N → N in the meta-theory, how do we
extend type theory with it?

Adding a new constant f, and a rule giving ` f : N → N
breaks canonicity.

But adding a new constant x:N ` f(x) : N does not, if. . .

we also add (for each n : N in the meta theory) a computation
rule:

cf(N[n]) ≡ N[φ n]

where N[n]=snz is the numeral representation of n in type theory.
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Extending type theory with new constants

How much does type theory know about the new constant f?

Not very much: If φ is, say, monotone, the new type theory
does not deduce x:N,y:N , p : x ≤ y ` f(x) ≤ f(y).

But we can add:

x:N,y:N , p : x ≤ y ` monf x y p : f(x) ≤ f(y)

And computation rules, which computes monf N[n] N[m] p to a
witness for every n and m (from our meta-theory).
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Choices

Quoting could be done in several ways:

1 Quoting into an internal representation of type theory syntax
(with quoting extensions).

2 Quoting into λ’-calculus

This approach falls into 2.
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The typed quoting binder

We first extend our type theory with the rule:

Γ·∆ ` a : A
−−−−−−−−−−−−−−− QUOTE
Γ ` Q(∆)a : Λ(Fin ‖∆‖)
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Examples

` Q(x:N)x : Λ (⊥+1)
x:N ` Q()x : Λ 0
` (λ(x:A) → Q()x) : A → Λ ⊥
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Computation rules

Now, using the representation we discussed, we add rules to
compute Q-abstractions:

This is straight forward for canonical terms:

Q(∆)(zero) ≡ zero
Q(∆)(succ n) ≡ app SUCC (Q(∆) n)
Q(∆)(λ(x:A)t) ≡ l (Q(∆,x:A)t)
(· · · )
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Computation rules

But for eliminators we must make sure that the head of the
principle argument is a variable bound by the quote:

Q(∆)(elim-N P n c0 c1)
≡ app (Q(∆)n) (Q(∆)c0) (Q(∆,x:N,p:P(x))c1)

is only added when the head of n is a variable in ∆.

Once we have added rules for each term former, it is
straight-forward to show that if ` a : A and a is normal in the
extended theory it reduces to a term of canonical form.
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Church’s Thesis

∏
f :N→N

∑
q:Λ′(⊥+>)

∏
n:N

q[r n] r (f n) (2)

The quote operation provides a candidate q, given f : N → N
namely Q(x:N)(f x).

Further extensions needed to show the rest of the statement.
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Substitution rule

Here is such a further substitution rule:

∆,x:A ` t(x) : B(x) ∆ ` a:A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Q-SUBST
(Q(∆,x:A)t(x)) [Q(∆)a]  Q(∆)t(a)
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Church thesis from Q-SUBST (proof sketch)

By induction one can show that r n = Q()n.

So given f : N → N, we let q := Q(x:N)(f x), and must
prove q [r n]  r (f n):

q [r n] = q [Q()n]
≡ Q(x:N)(f x)[Q()n]
 Q()(f n)
= r (f n)

The reduction step uses Q-SUBST.
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Current status

Definition of λ’-calculus and substitution formalised in Agda.
Still many proofs to formalise (confluence, normalisation)
An interpreter implemented in Haskell (and a small
programming language based on the calculus).
Ongoing: Giving the computation rules for Q-SUBST and
proving normalisation and canonicity for these.
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