Quotes in A-calculus and type theroy

Hékon Robbestad Gylterud

Stockholm 2019

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Introduction

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Quoting in natural language

The password is long.
The password is “long”.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Church’s Thesis

“Every function is computable.”

m Which notion of computable?
m Which functions?

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Church’s Thesis

“For every function N — N there is a Kleene-index computing the
function”

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Church’s Thesis

“For every function N — N there is a term in A-calculus computing
the function”

m Which encoding?
m What quantifiers?

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Church’s Thesis

H Z Hq[rn]wr fn) (1)

f-N=NgAN(L+T)nN

m N'(L+ T) is the type of terms of the \'-calculus with one free
variable.

m Square brackets are substitution of A\’-terms.

m r: N — AL encodes the numerals as closed \'-terms.

m_~_ : NV X = AN’ X — Set denotes reduction relation on
A'-terms.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

The setting of this talk

We will consider “type theory"” in this talk to mean dependent type
theory with

[M-types

And a limited collections of inductive types:

> +,1,T,14,N,Fin AN’ ~

m No 7-rules, but we have the &-rule (conversion under
A-abstractions)

No unverses (yet).

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Representing (untyped) binding operations in
type theory

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Binding operations

Ways to express variables and substitution:

Strings

De Bruijn indices
Explicit substitutions
Combinators

The following representation is due to Bird and Paterson.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Type based de Bruijn indices

data A (X : Set) : Set where
var : X —- A X

a: N X+T) - AX

app : N X - A X - AKX

Examples:

m 1 (var (right %))
m 1 (var (left %))
B (i (var (left (right x))))

The translation to de Bruijn indices is simply that right x
corresponds to the index 0 and left xisx + 1.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Type based de Bruijn indices

data A (X : Set) : Set where
var : X — A X

a: N X+T) - AX

app : N X = A X - AKX

Using this representation it is easy to:

m see that A is a monad, with substitution as the Kleisli
composition.
m define the reduction relation _~~_ : A X — A X — Set.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

\'-calculus

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

\' calculus

M'-calculus extends A-calculus with a new binder:

data A’ (X : Set) : Set where
var : X — A’ X
a: N X +T) - AN X
app : AV X - A X —- A X
> : (m:N) AN X+ Finn) - AX

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Examples

[x]°x

[1°x
Ax.[1°x
[1°(Ax.x)
x y1’(x y)

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Examples

[x]’x,or1 ’> (var (right %))

[1’%,0or0 > (var (left *))

Ax.[1’x,orn (0’ (var (left (right =))))
[1°’(Ax.x),or0 * (n (var (right %)))

[x y1’(x y),or2 > (app (var (right %)))

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Quoting terms in A-calculus

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Detour: Church numerals

m ZERDO = A\fx.x
m SUCC := An.A\fx.f(nx)

This can be used to build a function ¢ : N — A L in type theory.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Detour: Church numerals

m ZERDO = A\fx.x
m SUCC := An.A\fx.f(nx)

This can be used to build a function ¢ : N — A L in type theory.
Observe:

m Every Church numeral can be typed: X — X) —» X — X)

m In fact these are all such functions (assuming paramatricity).

m The function iterate : N - (X —- X) — (X — X) is
an instance of the elimination principle for N in type theory.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Detour: Alternative representation of N in A-calculus

From Martin-Lo6f type theory: Induction principle for N:

x:N F P x type
Fc : Pz
x:N,y:P(x) - c; : P (s n)
N-ELIM

x : NF elim-N P x ¢cg c; : P x

Computation rules:

F elim-N P z Co €1 = ¢p
F elim-N P (s n) cg ¢t = ¢c; n (elim-N P n cg c1)

Hakon Robbestad Gylterud
Quotes in A-calculus and type theroy

Alternative representation of N in A-calculus

This inspires the following:

m ZERO := MAcgci. <o
m SUCC := An.)\cgcy. c¢1 n (n cg c1)

Which gets the computation rules by §-reduction:

m ZERO cg c1 ~ ¢
m (SUCC n) cg c1 ~ ¢c1 n (n cg c1)

This way of encoding extends to many inductive types.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Representing A-calculus in A-calculus

data A (X : Set) : Set where
var : X —- A X
a: AN X+T) - AKX
app : N X = AX = AKX

Which inspires the following the representation of A-calculus in
A-calculus:

VAR = M\x. v 1la. vzx
LAM =)Xt. vla.lt (tv1la)
APP AMuvla. atu(tvla) (uvla)

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Representing \'-calculus in A(")-calculus

The definition we had of terms in A" gives a similar representation

data A’ (X : Set) : Set where
var : X — A’ X
a: N X +T) - AN X
app : AV X - A X — A X
> : (m:N) AN X+ Finn) - AX

VAR = Ax. vlagqg. vx

LAM =)\t. vliag.lt Gtv1lagqg)

APP = AXtu. vlag.atu(tvliagqg (uvlagq
QUOTE ;= Ant. vliag.qnt (tvlagq

Notice: No quotes are used to represent terms.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

The reduction relation in A'-calculus: variable-quoting

A quote will only be encoding variables which it has bound:
n ’ (var (right x)) ~» VAR (r x)

Example: We have [x]’x ~» VAR ZERO but []’x does not reduce.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

The reduction relation in A'-calculus: A-quoting

Informally, we want, whenever x does not occur in v:

v > (Ax.t) ~ LAM (xv ’ t)

Formally, we need to do some variable yoga:

associate : A (X + Finn) + T) — A (X + Fin (succ n))
And we get:

n’ (x t) ~ app LAM ((succ n) ’ associate f)

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Example

[1°(Ax.x) ~ LAM ([x] ’ x)
~~» LAM (VAR ZERO)

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

The reduction relation in \'-calculus: app-quoting

It would be tempting to have:
v > (t u) ~ APP (v’t) (v’u)

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

The reduction relation in \'-calculus: app-quoting

A trap!

It would be tempting to have:

v > (t w) ~ APP (v’t) (v’u)

But, that would break confluence when rewriting under quotes:
We would have both:

[yl’((Ax.x)y) ~ APP (LAM (VAR ZERO)) (VAR ZERO)
...and...

[yl’ ((Ax.x)y) ~ [yl’y ~» VAR ZERO

Hakon Robbestad Gylterud
Quotes in A-calculus and type theroy

The reduction relation in \'-calculus: app-quoting

However, this is safe, whenever the head of t is a variable in v:

v > (t u) ~ APP (v’t) (v’u)

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

The reduction relation in \'-calculus: app-quoting

However, this is safe, whenever the head of t is a variable in v:
v > (t u) ~ APP (v’t) (v’u)
Formally: When head t = right k for some k : Fin n, we have

n’ (app t u) ~ APP (n’t) (n’w)

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

The reduction relation in A'-calculus: -quoting

Finally, we must also be careful when quoting quotes:

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Properties of the \'-calculus

Confluence: Rules were carefully chosen for this.

Canonicity: For any normal term t : A(L+Fin(n)) the
closed termn > t : A L reduces to a normal (quote-free)
A-term.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Properties of the \'-calculus

Confluence: Rules were carefully chosen for this.

Canonicity: For any normal term t : A(L+Fin(n)) the
closed termn > t : A L reduces to a normal (quote-free)
A-term.

Proof-sketch of 2: By induction on t: we have given rules
reducing X’t for each head normal form t could have. Each
computation rule applies > only to subterms of t.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Example

Some quoted terms do not normalise:

Z=[f]"((x. £ (x x)) (Ax. £ (x x))) has the property
that

Z ~» (APP (VAR ZERO) Z).

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Quoting as an extension of type theory

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Representing terms of type theory in A-calculus

m For N we got an encoding in A-calculus by looking at
N-elimination.
m Similarly, we can encode our other inductive types:
m PATR = Aa b.Ap. p a b for Z-types.
m REFL = Ax.\p.p x for Id-types etc

m \-abstraction will represented by A-abstraction.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Consistency of type theory

Consistency of type theory can be proven from:

m Canonicity: If = a : A then a is canonical.
m Normalisation: Every term can be reduced to a normal form.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Extending type theory with new constants

Given a function ¢ : N — N in the meta-theory, how do we
extend type theory with it?

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Extending type theory with new constants

Given a function ¢ : N — N in the meta-theory, how do we
extend type theory with it?

m Adding a new constant £, and a rule giving £ : N — N
breaks canonicity.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Extending type theory with new constants

Given a function ¢ : N — N in the meta-theory, how do we
extend type theory with it?

m Adding a new constant £, and a rule giving £ : N — N
breaks canonicity.

But adding a new constant x:N F f(x) : N does not, if...

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Extending type theory with new constants

Given a function ¢ : N — N in the meta-theory, how do we
extend type theory with it?

m Adding a new constant £, and a rule giving £ : N — N
breaks canonicity.

But adding a new constant x:N F f(x) : N does not, if...

we also add (for each n : N in the meta theory) a computation
rule:

cf(N[n]) = N[¢ nl]

where N[n]=s"z is the numeral representation of n in type theory.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Extending type theory with new constants

How much does type theory know about the new constant £7

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Extending type theory with new constants

How much does type theory know about the new constant £7

m Not very much: If ¢ is, say, monotone, the new type theory
does not deduce x:N,y:N , p : x < y F £(x) < £(y).

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Extending type theory with new constants

How much does type theory know about the new constant £7

m Not very much: If ¢ is, say, monotone, the new type theory
does not deduce x:N,y:N , p : x <y F £(x) < £(y).

But we can add:
x:N,y:N , p:x < ybFmonfxyp:=£fx <1y

And computation rules, which computes monf N[n] N[m] pto a
witness for every n and m (from our meta-theory).

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Choices

Quoting could be done in several ways:

Quoting into an internal representation of type theory syntax
(with quoting extensions).
Quoting into A'-calculus

This approach falls into 2.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

The typed quoting binder

We first extend our type theory with the rule:
MNMA Fa: A

QUOTE
[F Q(A)a : AFin ||A]D

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Examples

mE Qx:N)x : A (L+1)
Ex:NFQOx : A O
mFE (A(&x:A) — Q0x) : A > A L

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Computation rules

Now, using the representation we discussed, we add rules to
compute Q-abstractions:

This is straight forward for canonical terms:

Q(A) (zero) = zero

Q(A) (succ n) = app SUCC (Q(A) n)
QCA) (A (x:M)t) = n (Q(A,x:A)t)
D)

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Computation rules

But for eliminators we must make sure that the head of the
principle argument is a variable bound by the quote:

Q(A) (elim-N P n cg c1)
= app (Q(A)n) (Q(Adco) (QCA,x:N,p:P(x))c1)

is only added when the head of n is a variable in A.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Computation rules

But for eliminators we must make sure that the head of the
principle argument is a variable bound by the quote:

Q(A) (elim-N P n cg c1)
= app (Q(A)n) (Q(Adco) (QCA,x:N,p:P(x))c1)

is only added when the head of n is a variable in A.

Once we have added rules for each term former, it is
straight-forward to show that if - a : A and a is normal in the
extended theory it reduces to a term of canonical form.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Church’s Thesis

H Z Hq[rn]wr(fn) (2)

fN=NgAN(L+T)nN

The quote operation provides a candidate q, given f : N — N
namely Q(x:N) (f x).

m Further extensions needed to show the rest of the statement.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Substitution rule

Here is such a further substitution rule:

A,x:AF t(x : B(x) AF a:A

Q-SUBST
QCA,x: Mt (x)) [Q(A)a]l ~ Q(A)t(a)

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Church thesis from Q-SUBST (proof sketch)

By induction one can show that r n = Q()n.

Sogivenf : N — N, weletq := Q(x:N)(f x), and must
prove q [r n] ~ r (f n):

q [r n] = q [QOnl

Q(x:N) (f x)[Q0n]
QO (f n)

r (f n)

g

The reduction step uses Q-SUBST.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

Current status

Definition of \'-calculus and substitution formalised in Agda.
Still many proofs to formalise (confluence, normalisation)
An interpreter implemented in Haskell (and a small
programming language based on the calculus).

Ongoing: Giving the computation rules for Q—-SUBST and
proving normalisation and canonicity for these.

Hakon Robbestad Gylterud

Quotes in A-calculus and type theroy

