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File opening

Figure 1: The file opening dialogueHåkon Robbestad Gylterud
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Access control

Basic security concern on any multi-user system:

How to controll access to objects?

More specifically:

Preventing access
Limiting access
Granting access
Revoking access
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Principle of least priviledge

Principle
A process/object/user/service/· · · should only have as much
priviledge as needed to perform their intended task.
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Access control lists

An access control list associates to each object a list who can access
the object.

Example: File permissions.

Access control lists (ACLs) is the conventional solution for access
control.
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The confused deputy

Typical failure of ACLs:

Priviledged process (deputy) is tricked into performing a bad
action when acting on behalf of less priviledged process.

This pattern was identified by Noam Hardy, when thinking about a
security hole in a system’s Fortran compiler
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Hardy’s confused deputy

A fortran compiler located in /sysx/fort:

Accessible for all users
Has special priviledges to /sysx/ to:

Write usage statistics to /sysx/stats

Takes input/output files from command line args

Question: What happens if user gives output file /sysx/stats or
worse /sysx/bill?
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Hardy’s confused deputy

Figure 2: Direct access would be denied
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Hardy’s confused deputy

Figure 3: Fortran compiler acts as a confused deputy
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Hardy’s confused deputy

Why did this failure occur?

fort has legitimate access to /sysx/stats
Users have to specify input/output files

fort inadvertedly becomes a confused deputy.

How can we solve this?
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Ambient authority

Hardy identifies cause as ambient authority:

An ACL system tries as hard as possible to allow operation
using session cookie, UID/GID etc.
Processes do not have prove their access permit, which is
stored in the (ambient) environment.
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Cross-site request forgery: The confused deputy browser

Remember, cross site request forgery is possible when:

User is logged into site A (with a session cookie).
Site A will perform actions when the user makes request (send
message, transfer money, · · · )
User visits site B, which makes the browser send requests to
site A. (form.send() or <iframe> or <img> or · · · )

In this case the confused deputy is the browser.
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Capabilities
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Capabilities

A capability consists of:

A reference to an object
A set of permissions for that object

A capability is used whenever a resource is accessed.

Simple to check if an operation is allowed:

Example: read(capability):

Reads from the object pointed to by capability
if capability allows reading.
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Using capabilities

Restricting access to programs:

Give only the capabilities needed.
What capabilities should given to:

a word processor?
a web site?
a system login manager?

This allowes very fine grained applications of the principle of least
priviledge.
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Capability properties: Unforgeable

If a capability can be forged, it is useless as a security measure.

Two approaches to unforgeability:

Enforced by supervisor (operating system, virtual machine,
compiler, · · · )
Unguessable capabilities (random tokens, cryptographic
signatures, · · · )
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Enforced by supervisor

In an OS, the kernel can keep a table of capabilties for each
proces.

A capability is just an index in the table.
Since the process cannot access its table, it cannot forge
capabilties,

Example: File descriptors on Unix.
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Unguessable capabilities

Unguessable capabilities relies on entropy and cryptographic
security to prevent forging:

A capability can be referenced by a random number.
A capability can be signed.

Unguessable capabilities must be used when tranferring capabilities
over networks.
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Capability properties: Transferrable

Capabilities could be transferrable:

If I have a capability, I should be able to transfer it to you.

Capabilities do not care who uses them. Access control is decoupled
from identity.

This is what prevents possibly confused deputities.
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Example: Hardy’s confused deputy

Before: Fortran compiler takes file names from user.

Now: User transfer their capability for the output file to the fortran
compiler.

When writing ouputs the user given capability is used.
When writing to /sysx/, the compiler has a separate
capabilities.

Question: Why does this prevent the compiler from overwriting
/sysx/bil based on user input?
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Capability properties: Transferrable

Question: How would we implement transfer for unguessable
capabilities?

Question: How about for supervisor enforced capabilities?

Question: Do capabilities implement mandatory access control
(MAC) – or discretionary access control (DAC)?
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Abstraction

Capabilities are described by what you can do with the object
(permissions, or interface).

Not: What is the object?.
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In principle, the following are treated the same:

The capability of reading from a file.
The capability of reading from a network connection.

This means capabilities can be a means of abstraction.

Example: File descriptors in UNIX.
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Enforced by language: Memory safe capabilities

In a memory safe object capability system can be obtained by

endowment: Alice might have intrinsic capabilities given to
her at her creation
creation: Alice gets capability to access an object she creates.
introduction: Alice transfers a capability to Bob

This approach relies on the memory safety of the language.
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Example: Banking

Bank account capabilities:

Deposit D
Withdraw W
Read balance R

Attenuation:

Alice wants Bob to transfer her some money.
Alice has a (D,W,R) capability to her own account.
Alice creates a new (D) capability to her account and transfers
it to Bob.
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Example: Banking (alternative)

(Example from E programming language)

Instead of bank accounts, we could have a capability purse which
references an amount of money.

Anyone can create an empty purse.
transfer(src,dst,amount) transfers between purses.
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Example: Banking (alternative)

When Bob wants to transfer $10 to alice:

Bob creates an empty purse
Bob transfers $10 from his main purse to new purse.
Bob sends the purse with $10 to Alice.
Alice transfers to her main purse.
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Capability properties: Revokability

The creator of a capability should be able to revoke it.

Revokation can be temporary, partial.
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Example: CSRF-tokens as capabilities

CSRF-tokens can be viewed as capabilities:

Denotes an object (form target) and permission
(POST,GET,· · · )
Unforgeable (unguessable)

Tokens are principle transferrable.
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Capabilities for collaboration

Capabilities can be useful for collaboration:

Run a program with capabilities to acess shared resources.
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Universal persistence

Some capability based system feature universal persistence:

Program state remembered, along with capabilities. So that
a program is never “restarted”.

This solves the problem: How are capabilities retained when a
program restarts?

When a user logs in, the login manager reconnects them to
their running programs.
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Capabilities summary

A capability consists of:

A reference to an object
A set of permissions for that object

A capability is a unforgeable, transferrable token of authority.
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History

A lot of papers, systems and languages are based on capabilities.

Dennis & van Horn 1966, coined the term “Capability”
Ideas implemented in MIT’s PDP-1

Several systems in the 70’s (GNOSIS, KeyKOS, Cambridge
CAP)
More recently:

E language / Joe-E (Java subset)
Capsicum (FreeBSD)
Genode
Google Fuchsia
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Other things called “capabilities”

There are several things called “cabilities” which are unrelated to
capabality based security:

POSIX capabilities
Docker capabilties
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Muddiest point

Answer on mitt.uib.no.
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Next time: Capsicum and Chromium

Capsicum is in implementation of cababilities in FreeBSD
implemented as an extension of file descriptors.

Have a look at the Capsicum paper linked from the syllabus page on
MittUiB.
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