
Capability based security The Confused deputy Capabilities

INF226 – Software Security

Håkon Robbestad Gylterud

2019–10–07

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capability based security

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

File opening

Figure 1: The file opening dialogueHåkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Access control

Basic security concern on any multi-user system:

How to controll access to objects?

More specifically:

Preventing access
Limiting access
Granting access
Revoking access

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Access control

Basic security concern on any multi-user system:

How to controll access to objects?

More specifically:

Preventing access
Limiting access
Granting access
Revoking access

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Principle of least priviledge

Principle
A process/object/user/service/· · · should only have as much
priviledge as needed to perform their intended task.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Access control lists

An access control list associates to each object a list who can access
the object.

Example: File permissions.

Access control lists (ACLs) is the conventional solution for access
control.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

The Confused deputy

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

The confused deputy

Typical failure of ACLs:

Priviledged process (deputy) is tricked into performing a bad
action when acting on behalf of less priviledged process.

This pattern was identified by Noam Hardy, when thinking about a
security hole in a system’s Fortran compiler

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Hardy’s confused deputy

A fortran compiler located in /sysx/fort:

Accessible for all users
Has special priviledges to /sysx/ to:

Write usage statistics to /sysx/stats

Takes input/output files from command line args

Question: What happens if user gives output file /sysx/stats or
worse /sysx/bill?

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Hardy’s confused deputy

A fortran compiler located in /sysx/fort:

Accessible for all users
Has special priviledges to /sysx/ to:

Write usage statistics to /sysx/stats

Takes input/output files from command line args

Question: What happens if user gives output file /sysx/stats or
worse /sysx/bill?

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Hardy’s confused deputy

Figure 2: Direct access would be denied

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Hardy’s confused deputy

Figure 3: Fortran compiler acts as a confused deputy

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Hardy’s confused deputy

Why did this failure occur?

fort has legitimate access to /sysx/stats
Users have to specify input/output files

fort inadvertedly becomes a confused deputy.

How can we solve this?

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Ambient authority

Hardy identifies cause as ambient authority:

An ACL system tries as hard as possible to allow operation
using session cookie, UID/GID etc.
Processes do not have prove their access permit, which is
stored in the (ambient) environment.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Cross-site request forgery: The confused deputy browser

Remember, cross site request forgery is possible when:

User is logged into site A (with a session cookie).
Site A will perform actions when the user makes request (send
message, transfer money, · · ·)
User visits site B, which makes the browser send requests to
site A. (form.send() or <iframe> or or · · ·)

In this case the confused deputy is the browser.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capabilities

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capabilities

A capability consists of:

A reference to an object
A set of permissions for that object

A capability is used whenever a resource is accessed.

Simple to check if an operation is allowed:

Example: read(capability):

Reads from the object pointed to by capability
if capability allows reading.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capabilities

A capability consists of:

A reference to an object
A set of permissions for that object

A capability is used whenever a resource is accessed.

Simple to check if an operation is allowed:

Example: read(capability):

Reads from the object pointed to by capability
if capability allows reading.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capabilities

A capability consists of:

A reference to an object
A set of permissions for that object

A capability is used whenever a resource is accessed.

Simple to check if an operation is allowed:

Example: read(capability):

Reads from the object pointed to by capability
if capability allows reading.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Using capabilities

Restricting access to programs:

Give only the capabilities needed.
What capabilities should given to:

a word processor?
a web site?
a system login manager?

This allowes very fine grained applications of the principle of least
priviledge.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capability properties: Unforgeable

If a capability can be forged, it is useless as a security measure.

Two approaches to unforgeability:

Enforced by supervisor (operating system, virtual machine,
compiler, · · ·)
Unguessable capabilities (random tokens, cryptographic
signatures, · · ·)

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capability properties: Unforgeable

If a capability can be forged, it is useless as a security measure.

Two approaches to unforgeability:

Enforced by supervisor (operating system, virtual machine,
compiler, · · ·)
Unguessable capabilities (random tokens, cryptographic
signatures, · · ·)

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Enforced by supervisor

In an OS, the kernel can keep a table of capabilties for each
proces.

A capability is just an index in the table.
Since the process cannot access its table, it cannot forge
capabilties,

Example: File descriptors on Unix.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Unguessable capabilities

Unguessable capabilities relies on entropy and cryptographic
security to prevent forging:

A capability can be referenced by a random number.
A capability can be signed.

Unguessable capabilities must be used when tranferring capabilities
over networks.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Unguessable capabilities

Unguessable capabilities relies on entropy and cryptographic
security to prevent forging:

A capability can be referenced by a random number.
A capability can be signed.

Unguessable capabilities must be used when tranferring capabilities
over networks.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capability properties: Transferrable

Capabilities could be transferrable:

If I have a capability, I should be able to transfer it to you.

Capabilities do not care who uses them. Access control is decoupled
from identity.

This is what prevents possibly confused deputities.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capability properties: Transferrable

Capabilities could be transferrable:

If I have a capability, I should be able to transfer it to you.

Capabilities do not care who uses them. Access control is decoupled
from identity.

This is what prevents possibly confused deputities.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Example: Hardy’s confused deputy

Before: Fortran compiler takes file names from user.

Now: User transfer their capability for the output file to the fortran
compiler.

When writing ouputs the user given capability is used.
When writing to /sysx/, the compiler has a separate
capabilities.

Question: Why does this prevent the compiler from overwriting
/sysx/bil based on user input?

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Example: Hardy’s confused deputy

Before: Fortran compiler takes file names from user.

Now: User transfer their capability for the output file to the fortran
compiler.

When writing ouputs the user given capability is used.
When writing to /sysx/, the compiler has a separate
capabilities.

Question: Why does this prevent the compiler from overwriting
/sysx/bil based on user input?

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Example: Hardy’s confused deputy

Before: Fortran compiler takes file names from user.

Now: User transfer their capability for the output file to the fortran
compiler.

When writing ouputs the user given capability is used.
When writing to /sysx/, the compiler has a separate
capabilities.

Question: Why does this prevent the compiler from overwriting
/sysx/bil based on user input?

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capability properties: Transferrable

Question: How would we implement transfer for unguessable
capabilities?

Question: How about for supervisor enforced capabilities?

Question: Do capabilities implement mandatory access control
(MAC) – or discretionary access control (DAC)?

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capability properties: Transferrable

Question: How would we implement transfer for unguessable
capabilities?

Question: How about for supervisor enforced capabilities?

Question: Do capabilities implement mandatory access control
(MAC) – or discretionary access control (DAC)?

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capability properties: Transferrable

Question: How would we implement transfer for unguessable
capabilities?

Question: How about for supervisor enforced capabilities?

Question: Do capabilities implement mandatory access control
(MAC) – or discretionary access control (DAC)?

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Abstraction

Capabilities are described by what you can do with the object
(permissions, or interface).

Not: What is the object?.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

In principle, the following are treated the same:

The capability of reading from a file.
The capability of reading from a network connection.

This means capabilities can be a means of abstraction.

Example: File descriptors in UNIX.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

In principle, the following are treated the same:

The capability of reading from a file.
The capability of reading from a network connection.

This means capabilities can be a means of abstraction.

Example: File descriptors in UNIX.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Enforced by language: Memory safe capabilities

In a memory safe object capability system can be obtained by

endowment: Alice might have intrinsic capabilities given to
her at her creation
creation: Alice gets capability to access an object she creates.
introduction: Alice transfers a capability to Bob

This approach relies on the memory safety of the language.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Example: Banking

Bank account capabilities:

Deposit D
Withdraw W
Read balance R

Attenuation:

Alice wants Bob to transfer her some money.
Alice has a (D,W,R) capability to her own account.
Alice creates a new (D) capability to her account and transfers
it to Bob.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Example: Banking

Bank account capabilities:

Deposit D
Withdraw W
Read balance R

Attenuation:

Alice wants Bob to transfer her some money.
Alice has a (D,W,R) capability to her own account.
Alice creates a new (D) capability to her account and transfers
it to Bob.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Example: Banking (alternative)

(Example from E programming language)

Instead of bank accounts, we could have a capability purse which
references an amount of money.

Anyone can create an empty purse.
transfer(src,dst,amount) transfers between purses.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Example: Banking (alternative)

When Bob wants to transfer $10 to alice:

Bob creates an empty purse
Bob transfers $10 from his main purse to new purse.
Bob sends the purse with $10 to Alice.
Alice transfers to her main purse.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capability properties: Revokability

The creator of a capability should be able to revoke it.

Revokation can be temporary, partial.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Example: CSRF-tokens as capabilities

CSRF-tokens can be viewed as capabilities:

Denotes an object (form target) and permission
(POST,GET,· · ·)
Unforgeable (unguessable)

Tokens are principle transferrable.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capabilities for collaboration

Capabilities can be useful for collaboration:

Run a program with capabilities to acess shared resources.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Universal persistence

Some capability based system feature universal persistence:

Program state remembered, along with capabilities. So that
a program is never “restarted”.

This solves the problem: How are capabilities retained when a
program restarts?

When a user logs in, the login manager reconnects them to
their running programs.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Universal persistence

Some capability based system feature universal persistence:

Program state remembered, along with capabilities. So that
a program is never “restarted”.

This solves the problem: How are capabilities retained when a
program restarts?

When a user logs in, the login manager reconnects them to
their running programs.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Capabilities summary

A capability consists of:

A reference to an object
A set of permissions for that object

A capability is a unforgeable, transferrable token of authority.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

History

A lot of papers, systems and languages are based on capabilities.

Dennis & van Horn 1966, coined the term “Capability”
Ideas implemented in MIT’s PDP-1

Several systems in the 70’s (GNOSIS, KeyKOS, Cambridge
CAP)
More recently:

E language / Joe-E (Java subset)
Capsicum (FreeBSD)
Genode
Google Fuchsia

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Other things called “capabilities”

There are several things called “cabilities” which are unrelated to
capabality based security:

POSIX capabilities
Docker capabilties

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Muddiest point

Answer on mitt.uib.no.

Håkon Robbestad Gylterud
INF226 – Software Security

Capability based security The Confused deputy Capabilities

Next time: Capsicum and Chromium

Capsicum is in implementation of cababilities in FreeBSD
implemented as an extension of file descriptors.

Have a look at the Capsicum paper linked from the syllabus page on
MittUiB.

Håkon Robbestad Gylterud
INF226 – Software Security

https://www.usenix.org/legacy/event/sec10/tech/full_papers/Watson.pdf

	Capability based security
	The Confused deputy
	Capabilities

